Magnetism at Nanoscale: Nano-small meets Ultra-fast

Jyoti Mohanty

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Motivation

hard disks, read/write heads and Magnetic Sensors, spintronics devices

Thin film, Nanostructure, self-assembly

Magnetic domain & domain walls

Stuart S. P. Parkin, et al. Science 320, 190 (2008)

$(10^{-3} \,\mathrm{s};\, 10^{-3} \,\mathrm{m}) \rightarrow (10^{-15} \,\mathrm{s};\, 10^{-9} \,\mathrm{m})$

What we need

General requirements:

Technique requirements:

see the invisible	nanoscale spatial resolution
separate spin and orbital contributions	sensitive to s-o coupling
study thin films and interfaces	large cross section for "signal"
look below the surface	depth sensitivity
distinguish components	elemental (chemical) specificity
resolve dynamic motions	time resolution < 1 nanosecond

Why use X-rays?

- x-ray cross section and flux
- x-ray tunability: resonances and sum rules
- x-ray polarization
- x-ray spatial resolution
- x-ray temporal resolution
- * Coherence Properties

E.P. Wohlfarth, Iron, Cobalt and Nickel,

in Ferromagnetic Materials, vol.1, North Holland, Amsterdam, (1988)

X-ray absorption

X-rays can pick materials apart: layer-by-layer

Rich "multiplet structure" reveals local bonding

Resonant Magnetic Scattering

Photon-in photon-out: possible in applied fields

J. P. Hannon, G. T. Trammell, M. Blume, D. Gibbs, Phys. Rev. Lett 61, 1245 (1988)

Resonant Magnetic Scattering

Properties of 3d Transition Metals

White Line Intensity in 3d Metals

$$m_{L} = 2n_{h} \frac{\int_{L_{3}+L_{2}} (\mu^{+} - \mu^{-}) dE}{\int_{L_{3}+L_{2}} (\mu^{+} + \mu^{-} + \mu^{0}) dE}$$
ORBITAL
$$m_{S} + m_{T} = 3n_{h} \frac{\int_{L_{3}} (\mu^{+} - \mu^{-}) dE - 2\int_{L_{2}} (\mu^{+} - \mu^{-}) dE}{\int_{L_{3}+L_{2}} (\mu^{+} + \mu^{-} + \mu^{0}) dE}$$
SPIN

$$m_{L} = -\langle L_{\alpha} \rangle$$

$$m_{S} = -\langle 2S_{\alpha} \rangle; \quad m_{T} = -7 \langle S_{\alpha} - 3\hat{r}(\hat{r} \cdot S_{\alpha}) \rangle$$

Sum-rules results:Fe (n_{3d} = 6.61): m_{orb} = 0.086, m_{spin} = 1.98Co (n_{3d} = 7.51): m_{orb} = 0.153, m_{spin} = 1.55

C.T. Chen et al., PRL 75, 152 (1995)

XMCD spectra of the pure ferromagnetic metals

Magnetic Circular Dichroism

Magneto-optical response: weak, *k*-dependent

X-ray response: strong, k-integrated quantities number of holes, spin monent, orbital moment

- spin moments,
- orbital moments
- nanoscale resolution

Magnetic Semiconductor: MnAs/GaAs

- MnAs on GaAs integrates magnetic and semiconducting properties
- room temperature ferromagnetism
- spin injection demonstrated

Ramsteiner et.al, Phys. Rev. B, 66, 081304(R), 2002.

MnAs bulk properties

- phase transition: 1st order
- volume change ~ 2%

Ferromagnetic Paramagnetic Paramagnetic α -MnAs $\xrightarrow{40^{\circ}C} \beta$ -MnAs $\xrightarrow{125^{\circ}C} \gamma$ -MnAs

- strain induced phase coexistence
- thermal expansion mismatch between film and substrate
- stripe width function of temperature
- stripe periodicity function of film thickness
- magnetic easy and hard axes in the film plane

MFM Contrast of MnAs Films

MFM Set-up

X-ray Magnetic Imaging

Domain Classification

Micromagnetic Modeling

Structural and Magnetic Phase Transition

J. Mohanty, *et.al* Appl. Phys. A 77, 739 (2003), **Cooling** Appl.Phys. Lett. 82, 2308-2310 (2003).

Temperature Dependence of the Domain Structure

Temperature Dependence of the Domain Structure

Field Dependence of Magnetic Domains

MFM

type (III) domains vanish first (already at 3 mT)

• type (I) domains are the most stable domains

J. Appl. Phys. 98, 063909 (2005)

Microscopic Magnetization Reversal

MFM

measured along the easy magnetization direction of MnAs

Phys. Rev. B. 73, 104441 (2006)

- coercive field (magnetization reversal): 5 mT
- microscopic MFM measurements agree well with the integral SQUID measurements

Field Dependence of Phase Transition

MFM

 $(\alpha + \beta)$ phases

almost complete β -phase

Ferromagnetic phase stabilized above the bulk phase transition temperature by an external magnetic field: Magnetism -> Structure

Etching and AFM Measurements

White Line Intensity in 3d Metals

XMCD spectra of the pure ferromagnetic metals

Soft x-rays are best for magnetism

X-Ray Magnetic Linear Dichroism

Magnetic state - preferred spin axis

spin-orbit coupling distorts charge creates polarization dependence

XMLD – spectra below and above T_N

Lüning et al. Phys. Rev. B 67, 214433 (2003)

XMLD spectra of two oxides

Alders et al., Phys. Rev. B 57, 11623 (1998)

<u>XMLD</u>

* E of linearly polarized x-rays acts as a search light for the number of valence holes in different directions of the atomic volume.

Charge in the atomic volume is caused by an anisotropy in the bonding, i.e. by the electrostatic potential. In the absence of spin order, linear dichroism can only determine charge order in systems where the absorbing atom has lower than cubic symmetry.

* In the presence of spin order the spin-orbit coupling leads to preferential charge order relative to the spin direction even in cubic systems.

* determination of the spin axis in ferromagnetic and especially AFM systems by means of XMLD spectroscopy.

Since the electric field vector oscillates in time along an axis and the radiation may be absorbed at any time, linearly polarized x-rays are only sensitive to axial not directional properties. Hence one can determine the orientation of the AFM or FM axis, but the spin direction itself cannot be determined.

XMLD

- E parallel versus E perpendicular to the magnetic axis
- * $\cos^2\theta$ dependence, where θ is the angle between E and the magnetic axis.
- small in 3d metals due to small size of the spin orbit interaction and the large band width, resulting in a small charge anisotropy when the d states are summed over the Brillouin zone.
- XMLD effect (10-30%) may be observed in the presence of multiplet splitting.
- At a particular multiplet energy only selected d valence states are probed through matrix element Antiferromagnetic state effects that enhance the XMLD effect.
- In a simple picture we can view each multiplet as a strongly coupled spin-orbit state whose spatial extent is non-spherical, giving rise to the large XMLD effect.
- Since XMLD can arise from electric and magnetic asymmetries, care needs to be taken to distinguish magnetic order effects from ligand field effects. This is typically done through temperature dependent measurements.

. 1. Comparison of the predicted (left) and measured (right) pes of XMCD and XMLD spectra. The experimental ICD and XMLD spectra are measured at the Fe L_3 -edge an amorphous Fe₂₀Co₈₀ film (symbols).

JMM 272 2146 04

- The XMLD signal is much smaller than that of the widely used XMCD, therefore not many studies of the XMLD were carried out
- XMCD signal is odd in the magnetization M
- XMLD is even in M; i.e., to lowest order quadratic in M
- * The XMLD comes about as the intensity difference between resonant p-d transitions having $\Delta m = 0$ and the average of the transitions with $\Delta m = \pm 1$:

The relatively small exchange splitting of the 2p core states is crucial: without this exchange splitting the XMLD signal vanishes

• In a ferromagnetic transition metal the XMCD fraction of the absorption coefficient $\{(n_+-n_-)/(n_++n_-)\}$ is larger than the XMLD fraction $\{(n_+-n_-)/(n_++n_-)\}^2$

n₊₍₋₎ is the hole occupation number of the spin up (down)bands.

For example, in bulk Fe the peak XMCD at the 2p edge is 150% (normalized to the edge jump), while here the peak XMLD is only 8%.

- At the L₂ edge of Fe, both 2p_{1/2} multiplets contribute positively to the <S_z> component of the XMCD.
- These multiplets have equal and opposite contributions to the $\langle S_z \rangle$ component of the XMLD.
- To measure <S_z> with XMCD, one needs only to distinguish the L₃ and L₂ edges (separated by 13 eV in Fe). XMLD is more difficult, since it requires resolution of the individual multiplet states (separated by 1 eV).
- Each multiplet has an intrinsic broadening that is inversely proportional to the core-hole lifetime. In the solid state the atomic multiplets are further broadened into bands. Thus, if the core-hole lifetime is short or the hybridization strong, the $\langle S_z \rangle$ component of the XMLD spectrum is strongly suppressed. This is exactly the situation in transition metal systems, hence XMLD may not be measurable in a metal.
- Indeed, the two extant studies reporting nonzero TM XMLD have focused on metal oxides, where the multiplet peaks are narrow and well separated.

An important problem: Exchange Bias

discovered in 1956, technologically used for many years, ill understood

Magnetic Characterization

Element specific magnetic information

Looking at the frozen interface spins

Looking at the frozen interface spins

J. Mohanty et.al, New Journal of Physics, 15, 033016, 2013

Where are the frozen spins?

Our stand point: XMCD analysis

Example : The Spin Valve Sensor

AFM is "neutral"

Coupling of ferromagnetic and antiferromagnetic domains

X-Rays-in / Electrons-out - A way to study Interfaces

FM Co – tune to Co edge – circular polarization
AFM NiO – tune to Ni edge – linear polarization
FM Ni(O) – tune to Ni edge – circular polarization

Images of the Ferromagnet-Antiferromagnet Interface

Magnetic Spectroscopy and Microscopy

X-ray Magnetic Linear Dichroism: Antiferromagnets

X-ray Magnetic Circular Dichroism: Ferromagnets

Soft X-Rays are best for magnetism!