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X-ray Absorption Coefficient

The intensity of an x-ray beam passing through a material of
thickness t is given by the absorption coefficient u:

1
{.. I ;
l, — incident x-ray intensity

| —transmitted x-ray intensity

I = Lj'lj pt

u depends strongly on energy of X-rays, E and atomic number Z.
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X-ray absorption fine structure (XAFS) is the modulation of the x-ray
absorption coefficient near or above an absorption edge. XAFS is

also referred to as X-ray Absorption Spectroscopy (XAS) and is
divided in two regimes:

XANES — X-ray Absorption Near Edge Structure
EXAFS — Extended X-ray Absorption Fine Structure



History

e X-ray Absorption Edges were discovered in 1912

e X-ray absorption fine structure (XAFS) spectroscopy was first
noticed in 1920’s [Near Edge structure in 1920 and Extended
structure in 1929].
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e At that time spectroscopy was explained by electronic energy
levels of Bohr. Near Edge fit Bohr, but not Extended.
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 Kronigin 1931, 1932 in 2 publications proposed EXAFS LRO
theory based on electron energy bands and gaps in solids

(Bloch).



e After discovery that XAFS occurred in molecules Kronig in
1934 proposed a completely different theory, SRO theory,
(related to modern theory except did not include Debye-
Waller factor, mean free path and the correct phase shift. Also
could not calculate the photoelectron-atom interaction
correctly-no computers!)

* EXAFS first called Kronig Structure. Kronig never appreciated
that SRO correct for both molecules and solids, and LRO
theory wrong, causing confusion for 40 years.

Disagreement between theory and experiment because both
were wrong!



PHYSICAL REVIEW B VOLUME 2, NUMBER 5 1 SEPTEMBER 1970

Extended Fine Structure in X-Ray Absorption Spectra of Certain Perovskites

Joseph Perel*
and

Richard D. Deslattes

National Bureau of Standavds, Washington, D. C. 20234
(Received 9 July 1969)

In this paper we attempt to test the validity of the short-range-order (SRO)} and the long-
range-order (LRO) theories of the extended fine structure (EFS) in x-ray absorption spectra.
This is done by comparing the EFS’s of Ti, Ca, Zr, and Sr in the perovoskitelike compounds
SrTiO;, CaTiOjz, SrZrOj3, and CaZrOjy. The regularities which have been anticipated from
SRO or LRO theories have not been observed. We are thus led to suggest that models are
required other than those which have been used to explain the EFS.



In 1965 E. A. Stern joined hands with Farrel Lytle at University
of Washington. Lytle had a lab facility measuring EXAFS
(before hard x-ray Synchrotron Radiation sources).

Dale Sayers, a grad student at UW, joined the duo to work for
his Ph.D. thesis on EXAFS: develop theory with Stern and
measure with Lytle.

 Their work showed the mistake in Kronig LRO; gave standard

and general form for XAFS in SS; shows that the
photoelectron-atom parameters are transferable between
known structures and thus can be used to determine
unknown ones for SS.
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New Technique for Investigating Noncrystalline Structures: Fourier Analysis of
the Extended X-Ray—Absorption Fine Structure®

Dale E, Sayerst and Edward A, Sternii
Department of Physics, Universily of Washinglon, Seattle, Washington 98105

and

Farrel W. Lytle

Boeing Scientific Reseavch Labovatovies, Seattle, Washington 98124
(Received 16 July 1971)

We have applied Fourier analysis to our point-scattering theory of x-ray absorption
fine structure to invert experimental data formally into a radial structure function with
determinable structural parameters of distance from the absorbing atom, number of
atoms, and widths of coordination shells. The technique is illustrated with a compari-
son of evaporated and crystalline Ge, We find that the first and second neighbors in
amorphous Ge are at the crystalline distance within the accuracy of measurement (1%).

Theory of the extended x-ray-absorption fine structure Edward A. Stern

Extended x-ray-absorption fine-structure technique. Il. Experimental practice and
selected results F. W. Lytle, D. E. Sayers, and E. A. Stern

Extended x-ray-absorption fine-structure technique. Ill. Determination of physical
parameters E. A. Stern, D. E. Sayers, and F. W. Lytle




XAFS — Modern Theory

e X-ray Absorption Fine Structure (XAFS) is ideally suited to
map such local distortions in structure.

— It results from interference of outgoing and back scattered
photoelectron waves.

— The range of photoelectron is limited due to core-hole life time.
— Photoelectron can also be scattered inelastically.



X-ray Absorption Fine Structure (XAFS)

 Modulation of X-ray intensities near or above an X-ray
absorption edge.

* Broadly divided in two regions
— XANES — X-ray Absorption Near Edge Structure
— EXAFS — Extended X-ray Absorption Fine Structure

* Contain related but slightly different information about an
element’s local coordination and chemical state.

* It applies to any element, works at low concentrations and
minimal sample requirements.
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XAFS: Fundamentals

Continuum
photo-electron
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EXAFS Equation

The initial state |i> - x-ray photon + core level electron

The final state |f> - core hole + photoelectron in the continuum

Fermi’s Golden Rule describes jt( E) as a transition between quantum states:

pu(B) ~ |(i|H|f)[*

HI|T)

{i| the initial stare describes the core level {and the photon). This

I5 not altered by the neighboring atom.

. N . ) : y ik
H the interaction. In the dipole approximation, H = e “rs 1.

|t} the final siate describes the photo-electron (and no photon).
This is altered by the neighboring atom.



We are interested in the transition rate between core level (e.g. 1s)
and final states that is induced by a weak time-dependent
perturbation such as x-ray photon.

The interaction Hamiltonian (to first order in field) H < A- D,
A - vector potential and p momentum operator of electron

Using commutation relations with the Hamiltonian,

poc |< flé-rett T > |2 k-7« 1

2T

In dipole approximation _‘ k= 3
poc|< flé-r|i > |- ag

zZ



writing |f) = |fop + Af), where A f gives the change in photo-electron final state

due to backscattering from the neighboring atom, we can expand [t to get

G[H|A) (fo[ H]i)*
|(i[H[fo)|?

p(E) ~ |(i|H|fo)|*[1 + +C.C]

Comparing this to our definition for Y,

p(E) = po(E)[1 +x(E)],

and recognizing that 1, (E) is given by | (i|H|fo) |2__ we see that
X(E) ~ (i|H|Af) ~ (i|AT).

Since the initial state for the core-level is very nearly a delta-function in space (cen-
tered at the absorbing atom), this becomes

\JEJ =~ /dl'd [:rjl.?r';‘?scatt{rj = .t!"{jscat‘[(o)'

XAFS is due to oscillations in the photoelectron wave-function at the
absorbing atom caused by its scattering by neighbouring atoms.




With x ~ ¢ ,,(0), we can build a

electron:
1. leaving the absorbing atom
2. scattering from the neighbor atom

3. returning to the absorbing atom

simple model for ¥ from the photo-

absorbing atom

scatte rln i 1 [
/ . .,

F)

\

outgoin
photo-electron

scatterec
photo—ele&tmn e

- eikR '5-"1(] e+
k)= > [2kf(k)e¥®) & 4 C.C.
x(k) = 15 [2kf(k)e®0] S =+
| f(k
x(k) = k(R)ﬂn[ZkR + (k)]

Nf(k)e 2k*o”

1oy _ N
x (k) R2

sin[2kR + d(k)]



Central atom Backscattering atom
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Thermal disorder

Period Photoelectron
of atomic vibrations time of flight
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Structural disorder

Distorted shells in crystals Sites disorder in crystals
‘ P ‘ + A
Yy
Non-crystalline systems | Nano-structures
Q\‘.
L -
e.g.: a-Ge ./’ '

Free-volume models
Enlarged
distributions

of distances




Thermal + Structural Disorder = Distribution of distances

Simplest Model — Gaussian approximation Asymmetric Distribution

; ! Joh \2
P(r.2) = Lexpllr ) ]

g2 207"
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Third cumulant
Asymmetry parameter
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Using a damped wave-function: | e~ e where A(k) is the photo-electron’s

mean free path {including core-hole lifetime), the EXAFS equation becomes:

2

r N fi (ke 2Ri/A K _—zkzq . |
x(k) =30 S € sin[2kR; + §(K)]
]

Another important Amplitude Reduction Term is due to the relaxation of all the other elec-
trons in the absorbing atom to the hole in the core level:

2 e N—1) 2 N—1, 2
%0 =% [%o. )

0.7<S,°<1.0



sin[2kR; + 6;(k)]

xgzt‘ fl{TID—ERJI.-"A[]{] E_Ekzg,jz
(k)= ¥  ——r

kR;?

]

If we know the scarrering properties of the neighboring atom: t(k 1 and d(k), and the
mean-free-path Ak ) we can determine:

R distance to neighboring atom.

N coordination number of neighboring atom.

a’ mean-square disorder of neighbor distance.

The scattering amplitude {{k) and phase-shift (k) depend on atomic number, so
that XAFS is also sensitive to £ of the neighboring atom.



XAFS: Experiment

Fluorescence
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Absorption
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Normalization
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FT of (k) (A™)

EXAFS: x(k), k weighting and x(R)
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EXAFS: x(k)

XAFS is an interference effect and depends on wave
nature of photo-electron.

2m(E — Ey)

02 1 ] 1 1 1 1 1 }_1 2
0 2 4 6 8 10 12 14

To model the EXAFS, we use EXAFS equation,

N.S2f. -k}e—znj;mjk}e—mzaf
x (k) = Z Solit

, KR}
]

sin [2kR; + §; (k)]

where f(k) and 6(k) are photo-electron scattering
e | properties of the neighbouring atoms.

If we know these properties then we can determine,
N — coordination number of neighbouring atom

R — distance to neighbouring atom

0? — mean square disorder of neighbour distance



Data Modeling

 Done using a guess structure, chemical plausibility and any
other information.

 The number of parameters that can be determined is given by

B 2AKAR

T
where Akand AR are usable ranges of EXAFS in kand R space
respectively. Typically Ak = [3 to 14 A'l] and AR = [1 to 5A]
which gives about 23 parameters.

e The R, N and o? for different paths can be constrained to
reduce the number of parameters.



Errors

« Random Experimental Fluctuations

e Systematic Errors — OX

e Statistical uncertainties of data analysis ——

X x 6X

* Repeat the Experiment



Scattering Paths

* A model (guess structure) is required to calculate f(k) —
scattering amplitude and 6(k) — phase shift.

Single Scattering Triangle Paths Triangle paths 45 < 6 < 135

aren’t strong but there can
@) be a lot of them.
| Multiple scattering paths

with 6 = 180 are very strong.

Focussed Multiple Scattering Paths

Angular dependence of
scattering can be used to
estimate bond angles.




Ni Metal (Example)

« Ni metal has face centered cubic structure with a = 3.523A.
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Magnitude of FT of (k)

Ni metal: R-space fitting

40
Data 1 Data
40 — Fit 30 1 —Fit
=
30 é 0.
o
=0
20 - = ]
5 -10-
10 4 C‘;é 207
304
O~ N N 0 S S —
0 1 2 3 4 5 6 4 6 8 10 12 14 16
R (A) k (A"
Shell N R(A) 02 (A2)
Ni-Ni 12 2.488(.008) 0.0063(.0004)
Ni-Ni 6 3.52(.01) 0.009(.001)
Ni-Ni-Ni 48 3.73(.01) 0.012(.001)
Ni-Ni-Ni 48 4.25(.01) 0.007(.001)
Ni-Ni 24 4.31(.01) 0.009(.001)



Nickel Oxide (NiO)

* NiO has rock salt structure with a lattice parameter of 4.177A.

 Nearest neighbour — 6 O at 2.088A and
second neighbour — 12 Ni at 2.953A.
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Ix(R)] A

NiO EXAFS modeling

 To model NiO EXAFS we calculate the scattering
amplitude f (k) and phase-shift 6(k), based on a
guess of the structure, with Ni-O distance R = 2.08A

35

30

251 Fit results

20+

1s- N=53+0.7

10 R = 2.075 + 0.005A

5. 02 = 0.0055 + 0.0007A2.




I(R)| (A

 To adding the second shell Ni to the model, we use calculation
for f (k) and &(k) based on a guess of the Ni-Ni distance, and
refine the values R,N, 2. Such a fit gives a result like this:

35
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R(A) 02 (A2)
2.10(.02) 0.0058(.0001)

3.05(.02) 0.0059(.0003)



XANES



« XANES is the region of X-ray absorption spectrum within

about 50 eV of the absorption edge.

XANES is strongly sensitive

to chemistry (formal
oxidation state and
geometry) of absorbing
atom.

Absorption
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Transitions

Information Content

Pre-edege |Features caused by Local geometry around absorbing atom.
electronic transitions to Dependence on oxidation state and bonding
empty bound states. characteristics (chemical shift).

Transition probability
controlled by dipolar
selection rules.

Edge Defines ionization Dependence on oxidation state (chemical
threshold to contimuum shift), mamn edge shifts to higher energy with
states. increased oxidation state. (As much as 5 eV

per one unit change).

XANES Features dominated by Atomic position of neighbors: interatomic

multiple-scattering
resonances of the
photoelectrons ejected at
low kmnetic energy. Large
scattering cross gection.

distances and bond angles. Multiple
scattering dominates but ab initio
calculations providing accessible insight (e.g.
FEFEB).
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XANES Interpretation

The EXAFS Equation breaks down at low-k, and the mean-free-path goes up.
This complicates XANES interpretation:

We do not have a simple equartion for XANES.

XANES can be described gualfitatively (and nearly guantitatively) in terms of

coordination chemistry  regular, distorted octahedral, tetrahedral, ...

maolecular orbitals p-d orbital hybridization, crystal-field theory, ...
band-structure the density of available electronic states.
multiple-scattering multiple bounces of the photo-electron.

These chemical and physical interpretations are all related, of course:

What electronic states can the photo-electron fill?

XANES calculations are becoming reasonably accurate and simple. These
can help explain what bonding orbitals and/or swructural characreristics give
rise to certain spectral features.

Cluantitative XANES analysis using first-principles calculations are still rare,
but becoming possible...



Shape Memory Alloys

Phys. Rev. B 74 224425 (2006)
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Ni,MnGa - series

* Ni,MnGa — Ferromagnetic T. = 375K
Martensitic Transformation T,, = 220K

Temperature (K)
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In Ni,,,Mn, Ga, up to x =
0.19 T,, increases and T,
decreases.

We have studied XAFS at
Mn and Ga K edges in x =
0, 0.1, 0.13, 0.16 and
0.19.



Crystal Structure

* Austenitic Phase — Cubic, L2, ordered Heusler (X,YZ) structure
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 Martensitic Phase — 5M_/7IVI — 5 layer or 7 layer modulations
of(110) planes along|110]| direction.

— V. V. Matrynov and V. V. Kokorin, J. de Phys 111 2 739 (1992)
— J. Pons et al, Acta Mater. 48 3027 (2000);
J. Appl. Phys. 97 083516 (2005)
— P.J. Brown et a/ JPCM 14 10159 (2002)
— S. Banik et al Phys. Rev. B75 104107 (2007).
— R. Ranjan et al Phys. Rev. B. 74 224443 (2006).
— L. Righi et al Acta Mater. 55 5237 (2007).
Acta Mater. 56 4529 (2008).



Brown et.al. ). Phys.:Condens. Matter 14 10159 (2002)

7 7M commensurate orthorhombic structure with sinusoidal modulations

XRD studies based on superspace approach reported an incommensurate
structure with g, = 0.4248.



Possible Scenario for Modulations

0.06 T T 0.02 T T
Mn
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% 002 o<
e =
: :
L .
3 8
S omt \ Ty
3 | ] L o
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Zayak et. al Phys. Rev. B 68, 132402 (2003) Brown et.al. ). Phys.:Condens. Matter 14 10159 (2002)

For x 2 0.18, a non modulated tetragonal structure is reported.



Experiment

 EXAFS at Mn and Ga K edge were performed at XAFS
beamline at Elettra.

e Sample — powder on tape.

 Two temperatures — R.T. (austenitic) and at Liquid Nitrogen
temperature (martensitic).



L2, Heusler Structure




Ni,MnGa: FT of Mn and Ga XAFS
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Mn K-edge EXAFS at RT in Ni,MnGa
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Magnitude and real component fitting in R space and back transformed k
space

k range = (2 - 15) A1; k weight = 3; Rrange=(1-5)A



Magnitude and Real component fitting of Mn
and Ga K-edge EXAFS at RTinx =0, 0.1
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k range = (2-15) A1; k weight = 3; Rrange=(1-5)A



Results of the fits to the RT Mn K-edge data

Atom and X=0 X 0.1
Coord.No. R(R) 02(A2) R(R) 02(A2)
Nil x 8 2.513(2) 0.0081(3)  2.512(2)  0.0080(2)
Gal x 6 2.909(3) 0.03(1) 2.795(8) 0.014(1)
Mn1 x 12 4.114(4) 0.029(9) 4.20(2) 0.021(3)
Ni2 x 24 4.824(5) 0.019(3) 4.85(1) 0.019(2)
Ga2 x 16 5.028(5) 0.007(1)  4.900(8) 0.008(1)
MS x 8 5.024(5) 0.0097(6) 5.02(1) 0.018(2)

MS ===>Mn — Ga3 — Nil - Mn

Numbers in the parentheses indicate uncertainty in the last digit



Results of the fits to the RT Ga K-edge data

Atom and X=0 X= 0.1
Coord.No. R(R) 02(A2) R(R) 02(A2)
Nil x 8 2.512(2) 0.B0ZO(R) Ty, 22BE(3)  0.0082(4)
Mn1 x 6 2.901(2)  0.030(6) 2.88(5) 0.026(7)
Galx 17 2.793(8b3(3)0.018(8da(h) | 24886R%)  OFBEHH)
Ni2 x 24 4.811(4)  0.015(1) 4.79(1) 0.016(2)
Mn2 x 16 5.025(3)  0.017(1) 4.90(1) 0.007(1)
MS x 8 5.025(3)  0.014(1) 5.15(3) 0.023(4)

MS== Ga —Mn3 - Nil-Ga

Numbers in the parentheses indicate uncertainty in the last digit



Magnitude and Real component fitting of Mn
and Ga K-edge EXAFS at LT inx =0, 0.1
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Magnitude and Real component fitting of Mn
and Ga K-edge EXAFS at LT inx=0.16, 0.19
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Results of the fits to the LT Mn K-edge data

Atom X= 0 X= 0.1 X= 0.16 X = 0.19

and

Coord. R(A) 02(A2) R(A) a2(R2) R(A) a2(R2) R(A) a2(R2)
Nilx 8 2.518(3) 0.0057(4) 2.518(5) 0.0056(5) 2.523(2) 0.0051(2) 2.521(2) 0.0081(2)
Galx 4 [2.780(6) 0.0043(5) 2.768(8) 0.0037(7) 2.739(3) 0.0054(3) 2.739(5) 0.0093(5)
Ga2x2 [2.96(3)  0.008(3)  2.95(2)  0.009(2) 3.23(2)  0.012(3)  3.23(4)  0.03(1)
Mnlx4 3.96(3)  0.009(3)  3.93(3) 0.009(3) 3.89(3)  0.008(4) 3.93(3) 0.019(5)
Mn2 x 8 4.19(1)  0.009(2)  4.19(1)  0.009(2)  4.23(1)  0.011(1)  4.24(1)  0.012(1)
Ti62 X  4.69(1)  0.011(1)  4.66(1)  0.009(1)  4.61(1)  0.009(2) 4.60(1)  0.019(2)
Ni3x8 4.90(1)  0.006(1)  4.905(8) 0.0040(7) 5.327(8) 0.0044(8) 5.34(3)  0.0134(4)
2465 X 5.068(6)  0.0095(7) 5.056(8) 0.0097(8) 5.075(4) 0.0068(4) 5.082(5) 0.0122(6)

MS —»Mn—GaB—Nil-Mn



Results of the fits to the LT Ga K-edge data

Atom X= 0 X= 0.1 X= 0.16 X = 0.19
and

Coord. R(R) o2(R2) R(R) o2(R2) R(R) o2(R2) R(R) 02(R2)
Nil x 8 2.5111(8) 0.00431(8) 2.512(2) 0.0044(2) 2.511(1) 0.0042(1) 2.512(2) 0.0074(2)
Mnlx 4| 2.791(4) 0.0078(5) 2.776(8) 0.0062(5) 2.722(4) 0.0067(5) 2.710(5) 0.0086(6)
Mn2 x 2| 3.065(2) 0.012(2)  3.06(2)  0.013(4)  3.0(2) 0.03(3) 3.24(2)  0.016(9)
Galx 4 3.97(1)  0.009(2)  3.93(2) 0.008(2)  3.85(2)  0.009(2) 3.85(3) 0.016(4)
Ga2 x 8 4.215(8) 0.0076(8) 4.214(9) 0.0079(9) 4.248(7) 0.009(1)  4.27(1)  0.011(1)
Ti62 x  4.706(8) 0.0048(6) 4.676(6) 0.0081(7) 4.619(7) 0.0083(6) 4.62(3)  0.023(4)
Ni3x8 4.889(3) 0.0047(3) 4.872(5) 0.0033(4) 5.319(8) 0.0025(5) 5.36(1)  0.007(1)
2469 X 5.069(7) 0.0111(9) 5.111(5) 0.0089(6) 5.106(2) 0.0047(3) 5.131(1) 0.0104(6)

MS === Ga— Mn3 — Nil - Ga



Results of the fits: Mn and Ga K-edge data

For x=0and 0.1

Mn-Ga2 = 2.95(2)

Ga-Mn2 =3.06(2)

Forx=0.13 and 0.16

Mn-Ga2 = 3.23(4)

Ga-Mn2 =3.0(1)

Forx =

0.19

Mn-Ga2 = 3.23(4)

Ga-Mn2 = 3.24(2)




Summary of EXAFS Results

Forx=0, 0.1 Forx=0.13, 0.16
Mn-Ga2 = 2.95(2) 0.009(2) Mn-Ga2 = 3.23(4) 0.012(5)
Ga-Mn2 = 3.06(2) 0.013(4) Ga-Mn2 =3.0(1) 0.03(2)

e Higher o? for Ga as central atom in comparison to Mn

e Mn-Ni + Ga-Ni = Multiple Scattering path, } the planes are

2.518 + 2.511 =5.029 # 5.069 “dimpled”

e Mn-Ni=2.523(2) and 0.0051(1) a difference of 0.011 A
Ga-Ni=2.511(1) and 0.0042(1) Ga closer to Ni



L2, Heusler Structure
L1 sub cell

Phys. Rev. B 74 224425 (2006)



XANES Studies
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Summary of EXAFS Results

Uneven movement of constituent atoms cause dimpling of planes
giving rise to modulations.

Mn has the largest amplitude of displacement while Ga atoms
have the least.

Upon martensitic transformation, Ga-Ni bond distance shorter
than Mn-Ni.

The effect is seen even in XANES features — indicates changes in
hybridization — leads to re-distribution of electrons causing band
Jahn-Teller effect.



HEXAGONAL MULTIFERROIC YMnO,

APPLIED PHYSICS LETTERS 99, 031906 (2011)



Hexagonal rare-earth (R) manganite RMnO3 has drawn much
attention due to so-called multiferroicity with coexisting
ferroelectricity and antiferromagnetism below 100 K.

The correlation between otherwise, independent order
parameters of polarization and magnetization is through a
spin-lattice coupling.

The ferroelectric polarization arises mainly from the R3*-O%
ionic displacements with relatively high transition
temperatures.

Possibility of manipulating the physical properties as well as
the multiferroicity by controlling the physics at the Mn site.
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Y(Mn,Zn)O,
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FT magnitudes (arb. units)
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GIANT MAGNETOCALORIC
Gd.(Ge,,Si,), ALLOYS

PRL 98, 247205 (2007)



* The family of giant magnetocaloric Gd.(Ge,,Si,), materials
continues to attract considerable attention due to its unusual
magnetic properties and its potential for use in magnetic
refrigeration near room temperature.

e The magnetostructural transformation involves displacement

of Gd containing slabs along a directions o ®
destroying the Ge(Si) bonds along b direction. [® 0
o %
* Breaking of these covalent bonds is believed (2 C:

to be responsible for destruction of FM order.
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* The spin-dependent hybridization between Ge 4p and Gd 5d
conduction states in Gd;(Ge, Si,), alloys is modified by the
bond-breaking magnetostructural transition reducing the net
Gd 5d moment and the strength of FM RKKY exchange
coupling across sheared slabs.

 The magnetic polarization at Ge sites is rooted in this
hybridization and the agreement between XMCD experiment
and theory validates our description of magnetization density,
albeit only in the O FM state.



MAGNETIC PROPERTIES OF
COBALTITES
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EXAFS studies

12} & {_:i'.lll.‘;lf.li'.ll.'ﬁl Itl—{]_hjl.ll
—Fitted

~ o}
5 7
< A
= bf P& f
= £ 1 [
s o ¥
O V?
’ ¥
UM ) L
i i 2 -

L9 CanLHA ) : “_—;,‘j
— LR AR o
= & (Co-OPL 5=0.80
5 1,95 ® -
=0 [ ] N o
3 ] i-_'.
'E |
& .89 +____+ *\*
L2T -i_i
Co- 'D Co Anglc
= 170}
g
o
(=43
=
o 160} +/ -
B
o
150}

]

80 160 240 320

Temperature (K}

Bond Length Ifaa.}

Angle (degree)

3R (A%

oo

1,

12} o Calculsted  8=0.67
—Fitted

D _
o

].QS 1 T T I.
- Co-0Ap =067 (&)
& (Co-UHPL 3
1.95| g __j. —
e
4y
1.8G} +
Cn-f}-{lo Angle m
170
“gtt A
150 .
] B ]ﬁﬂ 240 320

Temperature (K

S. Ganorkar et al JPCM (2012)



LaSrCoRuO6 — effect of thermal disorder
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Co and Ru K EXAFS
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