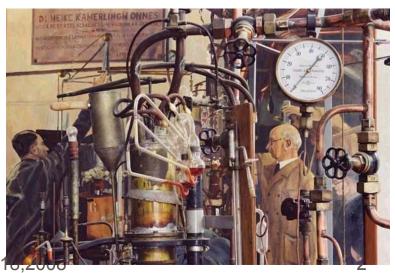
CRYOGENICS FOR ACCELERATOR

T.S. DATTA

Inter- University Accelerator Centre

New Delhi

1908 : Kamerlingh Onnes **Succeeded in Liquefying** helium


2008: Centenary Year for Liquid helium

Onnes's brother was able to arrange for large amounts of **monazite** sand, which contains helium, to be purchased from North Carolina. Onnes was able to extract about 300 liters of helium gas (at 1 atm) from the sand shipment.

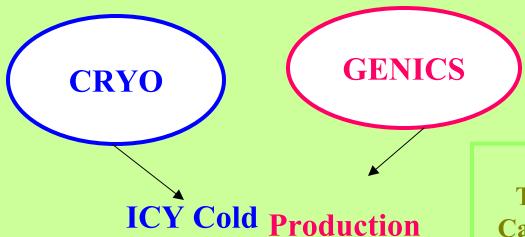
> The physics laboratory in Leiden became the "coldest place on earth" T.S. Datta: JAS -08

Heike Kamerlingh Onnes (1853-1926

Reference

Cryogenic System: R. Barron Proc. Asain Accelerator School: Prof Shin- ichi Kurokawa **Lecture Notes: Martin Wilson, Oxford Instruments CERN Accelerator School : Philippe Lebrun, LHC CERN Lecture Notes: Guy Gistau, Air Liquide. France** School Lecture: Ramesh Gupta, BNL, USA AAS : Kenji Hosoyama, KEK, Japan **CERN Accelerator school: G. Vandoni, LHC. CERN Lecture Notes: Thomas Peterson, Fermi Lab** Lecture Notes: Rao Ganni, Jefferson Lab Lecture Notes: Amit Roy, IUAC. Delhi

Cryogenic Engineering: Thomas F Flynn

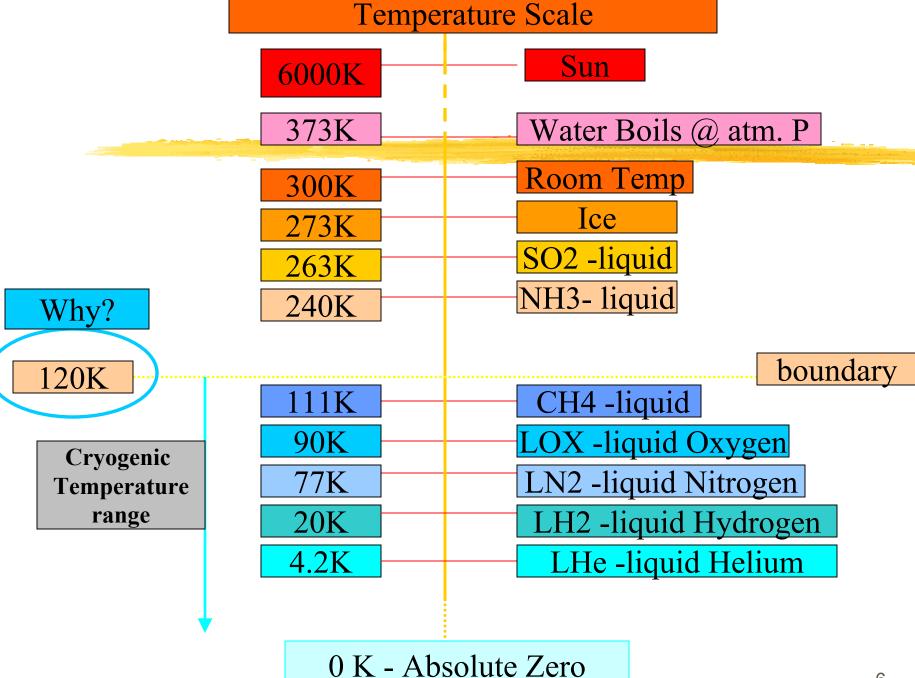

Cryogenic Course Material

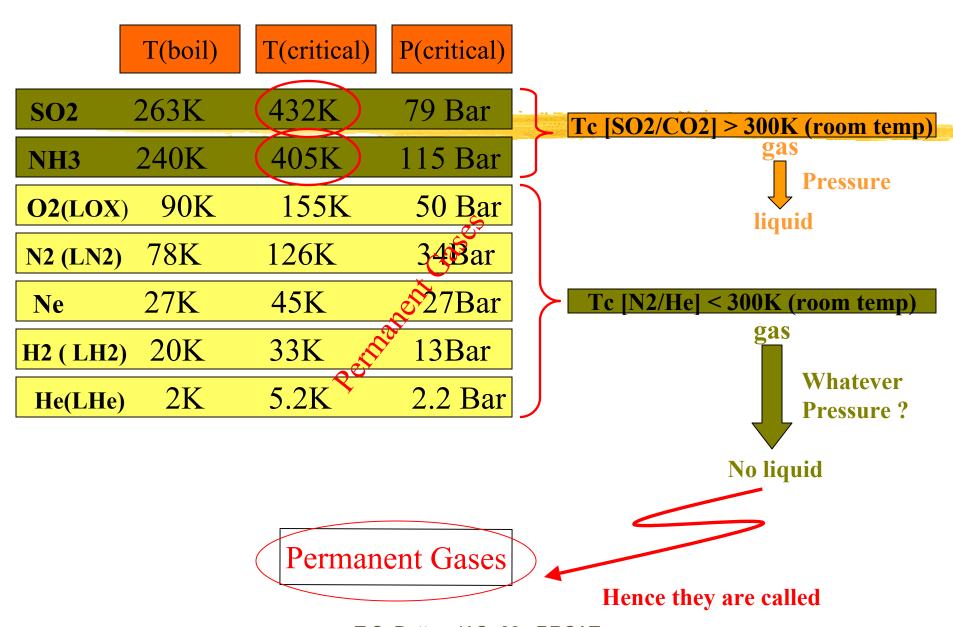
****Introduction: What is Cryogenics and Why Cryogenics for accelerator, Present Scenario**

How to Generate low Temperature / Production of Cryogen: Thermodynamics / Refrigeration Cycle

#How to Store Cryogen : Heat transfer, Cryomodule Design, Properties of Material :

****Measurement at Low temperature:**

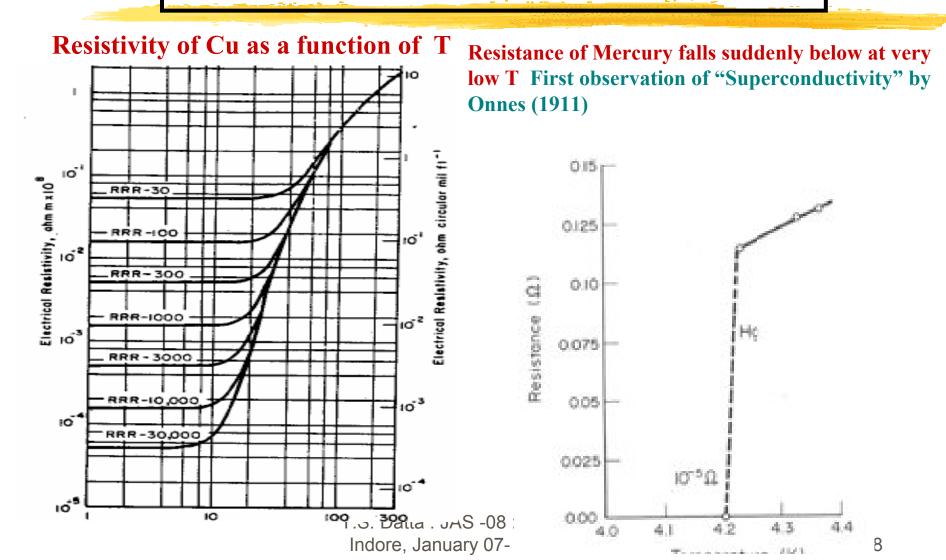


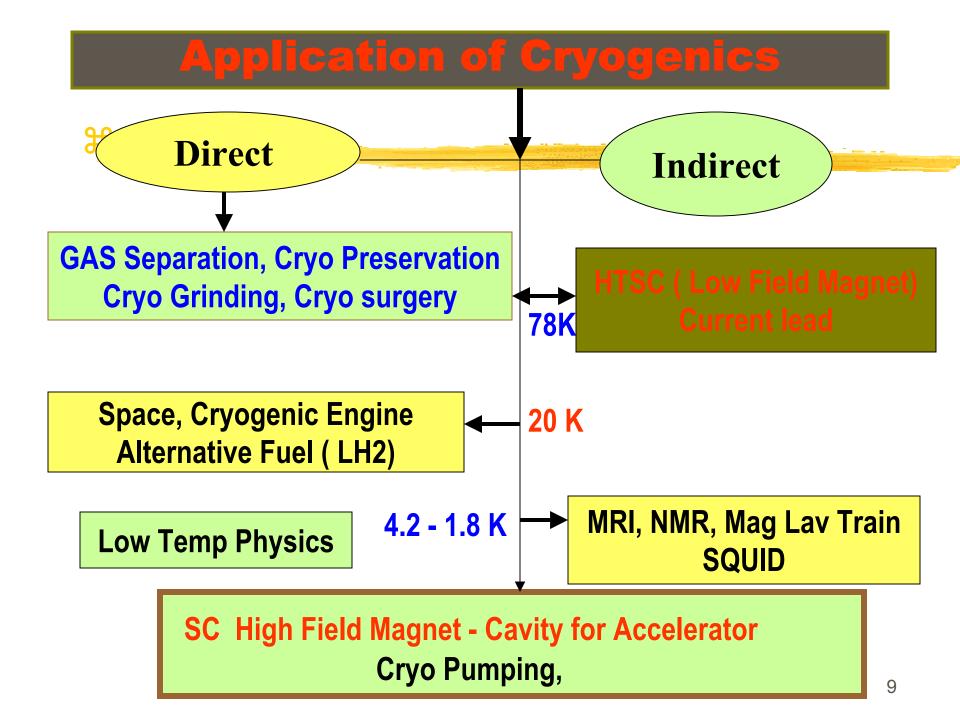

Temperature Range < 120 K

1877 : Liquefied Oxygen (90 K)

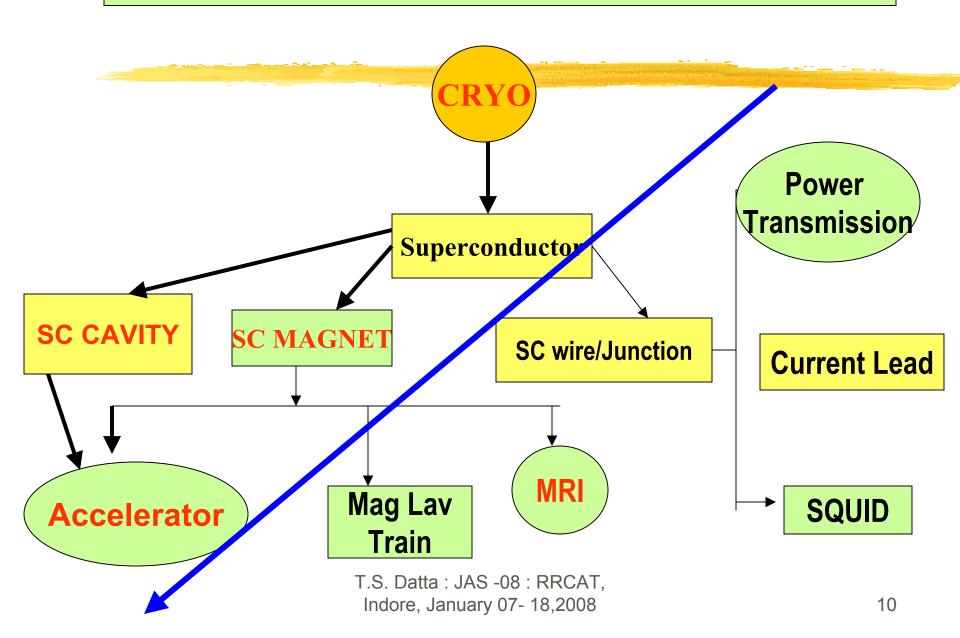
1908: Liquid Helium (4.2K) by K. Onnes

Today
Temperature
Can be achieved
< 200 pK
by
Dilution ref.
Adiabatic demag
and
Nuclear
magnetization

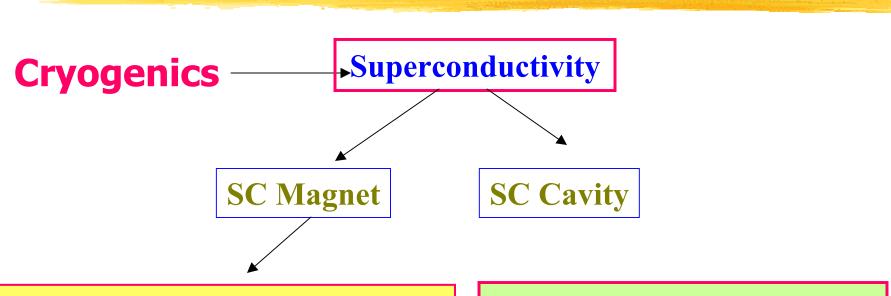



Ar, N2, O2, ATr. Nattar: 2JASm 8 HRCAT, Indore, January 07- 18,2008

1911: Kamerlingh Onnes discovery of mercury


superconductivity: "Perfect conductors"

1913 : Noble Prize



APPLICATION OF SUPERCONDUCTIVITY

CRYOGENICS FOR ACCELERATOR

Magnetic Field B = C I. N

I Limited for Normal Conducter, Joule Heating, Proportional to R

High Field, Compact size

Power Required to Accelerate the beam ~ Surface resistance

Superconductor Surface resistance is low

Power factor 1000 times

Cryogenics + Nuclear Science

Breakthroughs.

Extreme low temperatures through nuclear adiabatic demagnetisation.

Polarised targets for nuclear experiments.

High field magnets for particle accelerators.

Cryogenic detectors for high precision spectroscopy.

Superconducting Cavities for Particle Accelerators.

Cryopumping for better vacuum in Beam line pipe

T.S. Datta: JAS -08: RRCAT,

Cryogenics - Superconductivity - Accelerator (Brief History)

- **# 1908 Kamerling Ones Liquefied Helium (4.2 K)**
- **1911 Kamerling Ones Discovered Superconductivity (Hg)**
- **Superconductivity is Born!!**
- **# 1933- Meissner Effect > Perfect Diamagnetism**
- **1980** Tevatron, First Accelerator Using SC Magnet (70 Yrs)
- **# 1986 High Temp Superconductors (> 77 K)**
- **# 1990 India Embarked on SC Magnet for Accelerator**
- **32 ** 3001 Low Temp SC (Mg B2) with High Tc (39 K)**
- **2007** Commissioning of LHC (Largest Cryogenics)

Properties of Cryogenic Fluid

				*	
Fluid	He ₄	$\mathbf{H_2}$	Ne	N_2	O_2
B.P (K)	4.2	20	27	78	90
Tripple point (K)	2.1	14	24.6	63	54
Critical temp (K)	5.2	33	44	126	155
Critical Pressure(Bar)	2.3	13.2	27	34	50
Heat of vaporisation (J/gm)	20	400		199	200
Density (gm/litre)	125	71	1204	808	1140
Liquid vapour Density	7.4	53	127	176	240

Temperature Below 4.2 K

```
Liquid Helium (He4):

4.2 K

3.2 K

3.3 K

4.2 K
```

```
#Pumping Liquid Helium: 0.8K Superfluid)
```

```
#Pumping Liquid He3: 0.3K
```

Dilution Refrigerator: 10 - 5 mk

******Adiabatic Demagnetisation : 1mk

****Nuclear demagnetisation** : micro Kelvin

Cascade: Nano kelvin - Pico Kelvin

As on today Minimum Temperature Achieved < 200 pK

Basic of Superconductivity

```
Zero Resistance, Perfect diamagnetism below a
  Critical Temperature (Tc)
XTC: Hg: 4.2 K, Pb: 7.2 K, Nb: 9.2 K
      ( Used for SC Cavity): LHe
       \boxtimes Nb - Ti : 12 K, Nb<sub>3</sub>Sn : 18 K ( high Hc2) :
                        Magnet: LHe
# High Temperature Superconductor (Type 2): LN2
Zero Joule heating loss ~ I<sup>2</sup> R, High Current
  ( > 1000A can pass through < 1 mm dia wire)
     That find lots of Application !!
```

Superconducting Magnet

B is proportional to Current I and No of Turns/ Cm (N), Considering normal wire, we have limitations on increasing Current because of I²R. Hence low Field. For superconductor, Current should be lower than Jc (1300 A/mm2 for Nb- Ti wire at 4.2 K and 5 Tesla

Superconducting Accelerator Components

SC Cavity: Accelerating Structure; Low power Cost (LEP, CEBAF, KEK, IUAC, ILC)

SC Dipole SC Magnet (LHC, Tevatron): For Bending the Beam

SC Quadrupole Magnet: Better Focussing the beam because of Higher Gradient 100 T/ M against 20 T/ m

SC Solenoid Detector Magnet : Better resolution (ATLAS/LHC) $\nabla \phi$ α BL, $\nabla p/p$ α 1 /(BL²)

Worlds Largest Detector of Mass 1900 Tons with a height of four Storey building is placed recently in the LHC tunnel

T.S. Datta: JAS -08: RRCAT, Indore, January 07- 18,2008

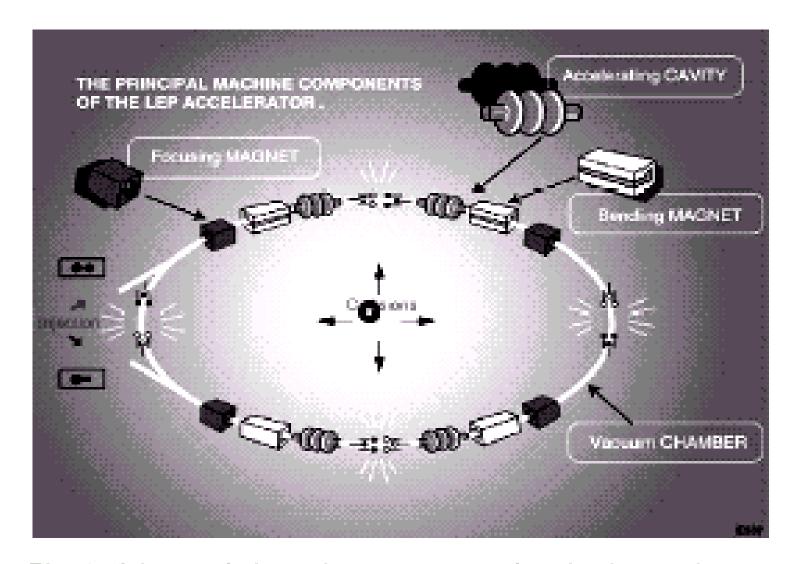


Fig. 1. Scheme of the main components of a circular accelerator. Cavities give the energy to the beam and magnetic elements take care of beam guidance and focusing.

Why High Field Magnet

Energy of Relativistic particles

E = **0.3** B dipole x R [TeV, Tesla, Kilometer)

To have higher Energy, either we have to increase diameter of the ring or to increase the magnetic Field

Normal Magnet

SC Magnet

1. Low Field (2 T)

High Field (10 T)

2. Higher radius

Smaller radius

3. Higher No of magnets

Smaller No of Magnets

4. Higher Infrastructure cost

Lower Cost

5. Higher Operation Cost

Lower Operation cost

6. No Liquefier

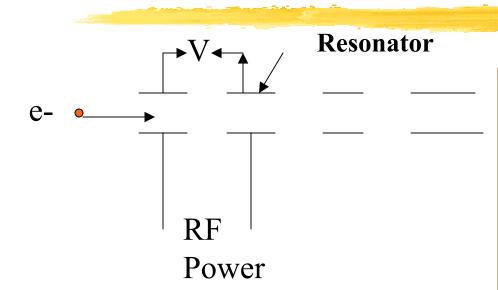
LHe / LN2

T.S. Datta: JAS -08: RRCAT,

Comparision for CERN LHC

Energy: 7 TEV, Circumfarence: 27 Km

Dipole Magnet Field: 8.3 Tesla


To Have the Same Energy with Normal Magnet with Field 2 Tesla,

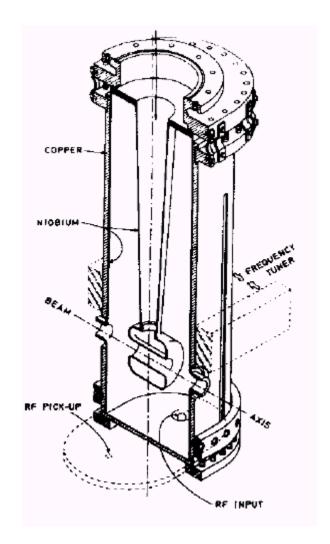
Circumfarence would have been 27x4 = 108 Km

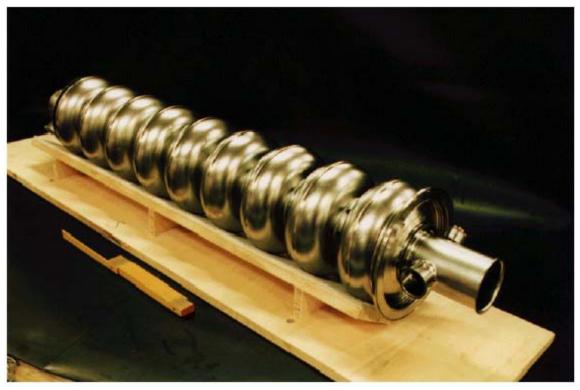
Required No of magnets : 1500 x4 = 6000

Refrigerator power: 144KW at 4.2 = 144x 225 KW = 33 MW at R.T

Fundamentals of Cavity

RF power is converted to generate High voltage. Higher voltage, higher RF power and Power loss on Resonator. Power loss Depends on Cavity


Material


For Acceleration we need voltage gradient

Energy = Charge x Voltage

Higher Voltage is generated in a Resonator equivanent of LC circuit on resonance with RF power

Heavy Ion RF Cavity

Electron Cavity Multicell

Why Superconducting Linac?

Unlike DC superconductor, there are resistive power loss in RF superconductor because of Surface resistance

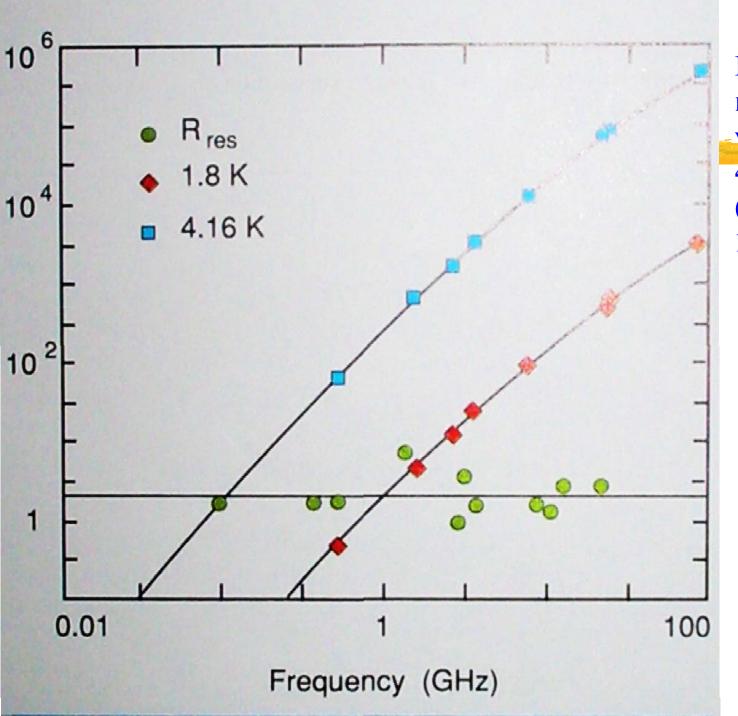
Resonant cavities have Quality factors, Q, whose value depend on resisitive losses.

High Q, Low Loss

Skin Depth \sim few μ m f > 100 MHz.

Q is inversely Proportional to Surface

Resistance.


For Cu at 300 K,

$$R_S = 7.8 [f(GHz)]^{1/2} m\Omega$$

For Nb at 4.2 K, $R_S = 10^5 [f(GHz)]^2 \exp[-18/T(K)] / T(K) n\Omega$

$\mathbf{R}_{\mathbf{s}}$	_at <u>100 MHz</u>	300 MHz	1GHz
Cu (300K)	$0.078~\mathrm{m}\Omega$	$0.96~\mathrm{m}\Omega$	$7.8 \mathrm{m}\Omega$
Nb (4.2K)	$3.28 \mathrm{n}\Omega$	$40 \text{ n}\Omega$ 3	28 nΩ

For Superconducting surfaces, additional contribution from residual resistance, \mathbf{R}_{res} .

BCS surface resistance of Nb vs frequency at 4.2 K (extrapolated to 1.8 K).

Power Comparision in Cavity

```
Normal Copper Cavity
1. Eacc =
               4 MV/ m
                                              4 MV/ m
               10<sup>4</sup>
                                               10<sup>9</sup>
2. Q_0 =
  ( Proportional to surface resistance)
3. Ra/Q<sub>0</sub>
               300 (geomery & frequency) 900
                                               53 W ( 4.2 K)
4. Power
               1.7 MW
(P = Eacc^2/Q_0 \times Ra/Q_0)
5. Power at 1.7MW
                                               3.18 Kw
  at Room Temperature
Considering static load of Cryostat and distribution line, power required
   will be double
                                               7 KW
```

Power Ratio: $\frac{1700}{7} = 200$

Indore, January 07- 18,2008

27

Few Accelerators with SC Magnet

Accelerator Energy		Fiel	Field Length	
Tevatron	0.9 Tev	4 T	6.3 Km	1987
(USA)	P P-			1507
HERA	0.92	5.3	6.3	1989
(Germany)	Рe			
SSC	20	6.8	87	cancel
(USA)	PP			
LHC	7	8.3	27	2007
(Switzerland) p p				

Accelerators with SC cavity

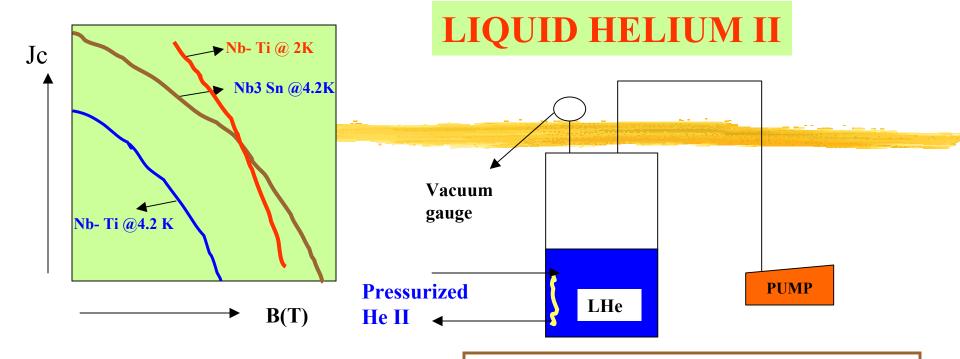
Lab	year	f	ctive	Gradient
		Mhz	Length	
KEK	1988	508	48m	4.5 MV/m
DESY	1991	500	20	2
CEBAF	1996	1497	169	5
CERN(LI	EP)1997	352	462	6
ILC (35 K	m) Fu	ture		31 MV/m
T.S. Datta : JAS -08 : RRCAT,				

Indore, January 07- 18,2008

29

We understand to have higher energy with low power consumption and compact size we need Superconducting Material

To Convert a normal Material to Superconductor, we have to Cool down it below Tc.


So we need cryogen like Liquid helium/ Nitrogen

Performance/ Stability improved when operates further away fromTC

Nb - Ti : Tc = 10-12 K, Lhe : 4.2 K, Performance 4.2 \leq Per 2K

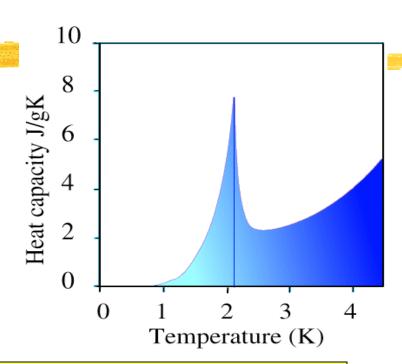
The need for cryogenic temperatures for cooling superconductors

Conductor	Critical temperature (K)	Typical operating temperature (K)
Nb	9.3	1.8 - 5.0
NbTi	10	1.8 - 5.0
Nb_3Sn	18	4.5 - 10
YBa ₂ Cu ₃ O ₇ (YBCO)	92	20 - 80
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀ (BSCCO)	108	20 - 80

Similarly SC Cavity
Surface Resistance
Exponentially Decreases
with the ratio of T/Tc

By Pumping vapor over liquid Surface, Temperature can be reduced to 0.8 K

But at 50 mbar Helium I changed to Helium II (Superfluid helium)

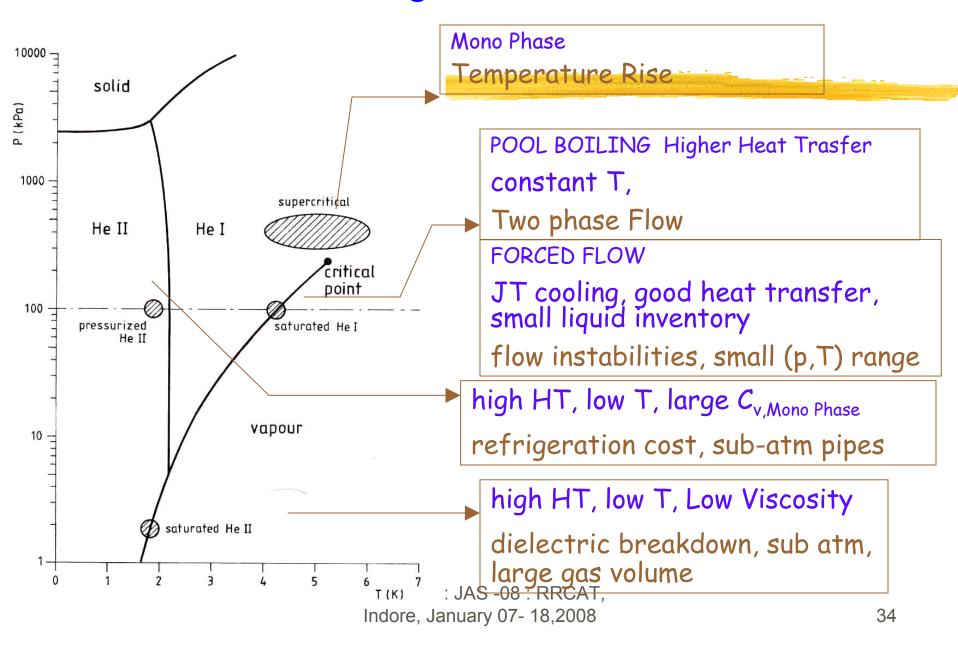

Finds application on accelerator

LIQUID HELIUM II

•transition to a superfluid phase below the λ-point (2.17K)

effects:

- –viscosity decreases by several orders of magnitude
- -creeps up the wall
- –heat conductivity increases by several orders of magnitude



Advantage: Superfluid Helium can easily flow through SC strand /Cable Small temperature rise with a heat input (specific heat)

Large Conductivity maintain equal temperature

SC Magnet is more stable

Phase diagram of helium

Cooling modes in large-scale cryogenic systems recently in operation

- # Pool boiling helium I (SRF for HERA, LEP, KEKB)
- # Forced flow of subcooled or supercritical helium I (Tevatron, HERA, SSC)
- Stagnant, pressurized helium II (the Tore Supra tokamak in France demonstrated the technology, LHC)
- # Saturated helium II (CEBAF, TTF at DESY, SNS at Oak Ridge, and foreseen for ILC)
- # This list also illustrates the extent to which superconductivity and cryogenics have become standard technology for accelerators

Helium phase diagram (S. W. VanSciver, <u>Helium</u> Cryogenics, p. 54)

- SRF -- HERA, LEP, KEKB
- Magnets -- HERA, Tevatron
- Magnets -- SSC
- Magnets -- Tore Supra, LHC
- SRF -- CEBAF, TTF, SNS, ILC

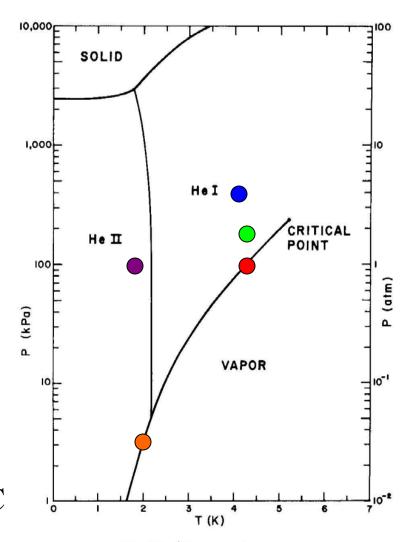
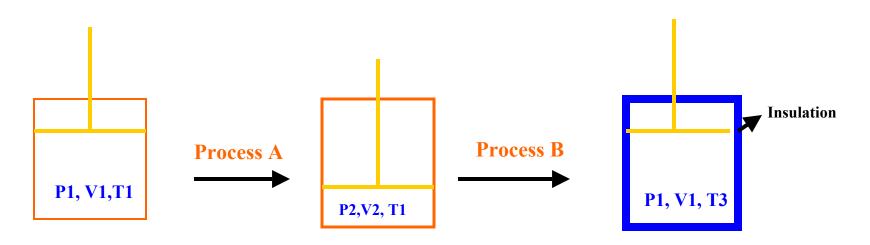


Fig. 3.1. ⁴He phase diagram.


HOPE WE WILL BE MEETING TOMORROW AT THE SAME TIME

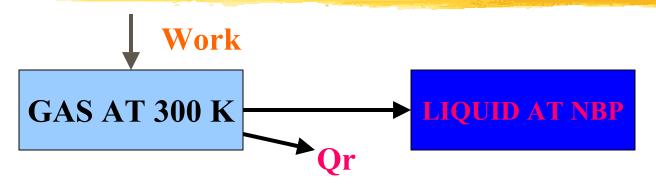
Liquefaction of gases/ Low temp Achievement

- ***Basic Thermodynamic Cycle**
- **XT-S Chart**
- **#Liquefaction cycle for N2 and He**
- ****Components for Liquefaction**
- ****Performance of Practical Refrigerator/ Liquefier**

BASIC THERMODYNAMIC PROCESS FOR COOLING

- **# A. ISOTHERMAL COMPRESSION (Compressor)**
- **B. ADIABATIC EXPANSION (Turbine)**
- **C. ISENTHALPIC EXPANSION (JT VALVE)**
- **B. ISOBARIC COOLING (Heat Exchanger, Precooler)**

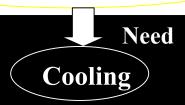
Isothermal compression is achieved with water/air cooling System. W = m. T(R/M) ln(P2/P1).

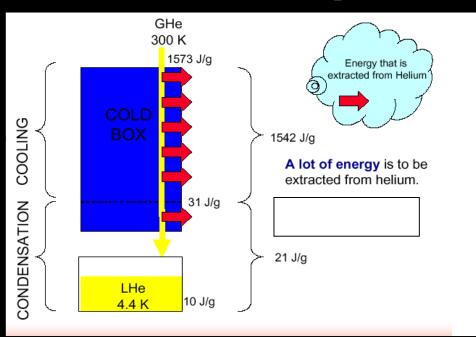

Example : 1 gm gas T = 300 K, P2/P1 = 15

Helium: 1600 W (20 NM3), N2 = 200 W (2.8 NM3

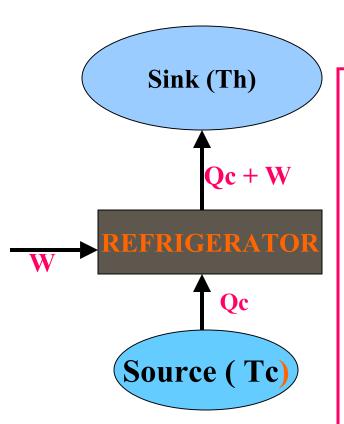
T3 < T1 (Cooling)

LIQUEFACTION OF PERMANENT GASES

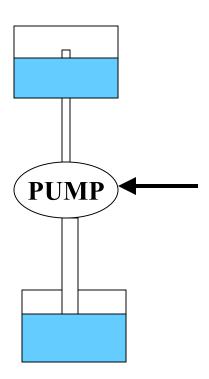

Qr = Sensible Heat + Heat Of Vaporisation


(Qr) = Nitrogen 234 J/gm (300K to 78 K) + 199 J/gm

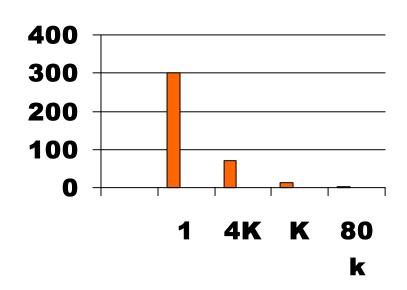
To Liquefy "Permanent Gases"



Or in other way U need to extract the energy from the GAS for example HELIUM

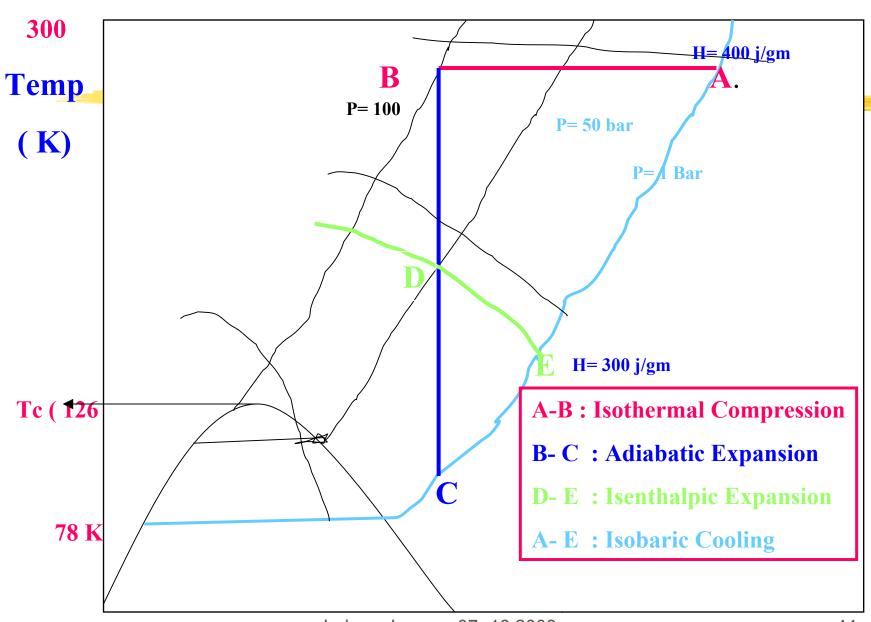

Refrigerator

To Transfer Heat from Source to Sink if source Temperature is less than Sink



Refrigerator is Analogus
To Water Pump to
Transfer Heat (Water)
from Lower Temp (Lower level) to Higher Temp (Higher Level)

Power required or pump size depends on water capacity (Ref. Load in Watt) and the difference of Tetal (ADiff of Temp)



Power (W) required to extract 1 W refrigeration at Tc is: W = 1/(COP)I = (Th- Tc) / Tc, Th = 300 K, Tc Vary from 200 K to .000001 K

These are Theoretical Power. We have to muliply first with efficiency Of the Cycle and then multiply with mechanical efficiency of all Components of refrigerator

T-S CHART FOR GAS

NITROGEN AND HELIUM

		Nitrogen	Helium
Normal boiling point	(K)	77.3	4.2
Density of liquid	(kg/m³)	808	125
Density of vapour	(kg/m³)	4.59	16.7
Normal gas density	(kg/m³)	1.25	0.18
Heat of vaporisation	(J/g)	200	20.9
Sensible heat (sat. vapour to 300 K)	(J/g)	234	1542
Critical temperature	(K)	126	5.2
Critical pressure	(b)	34	2.2