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Accelerating RF Cavities

We have seen that most of the charged particle accelerators use accelerating
“resonant” rf cavities. For example: cyclotron, synchrocyclotrons, synchrotrons,

microtrons and all linear accelerators. The exceptions are betatrons.

These rf cavities are excited by rf amplifiers. This will not be part of this class. You

may learn about these in one of the classes on RF systems.

Examples of rf cavities: [_MI Cavity

Pillbox Cavit -
TMoro Y .

0.11 Vipc

89 Q/cell

SC Cavity

For fundamentals of electro-magnetic rf cavity resonators refer to Feynman Lectures

II Chapter 23.

Generally, fundamental mode of the resonant cavity is used for beam acceleration. The

Q value of the cavity at that frequency is given by,

0=2r1 Energy Stored in Cavity _ A,
Energy Lost per Cycle  f,,

Q(MI) ~ 5000, Q(SC)~10° etc. If Q=1 then they are called
wideband rf cavities.

Power

Af=3dB width

frequency
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Accelerating RF Cavities (cont.)

In low and medium energy synchrotron accelerators, the frequency of the cavity need to
be varied continuously during beam acceleration. For example,

Fermilab Booster (400MeV-8GeV)- 38MHz-52.81MHz
Main Injector (8-150GeV)- 52.81-53.14MHz
Tevatron (150GeV-1TeV)- 53.14MHz~> 53.14MHz +1kHz

Ferrite loaded ftuners are commonly used to vary the frequency of the cavity if the
frequency range is large . However, in the case of the Tevatron the cavities are
tuned to required frequency by varying the temperature of the cooling water.

In any case, the accelerating E-field at the accelerating gap is given by,
E=E™" withw=2xf,, f, —rf resonant frequency

f, =hf,,  h=harmonic humber,
| fre,= revolution frequency of the particle

Or the accelerating rf voltage is,

V=V,sing, ¢=wt
In a circular accelerator the particles are accelerated by repeated passage through
the same rf cavity or a number of rf cavities.

Example: In case of the Tevatron, Vy~1MV and ¢=~10deg. The beam circulates about
4.77x106 times to accelerate from 150 GeV to 1 TeV in about 100 sec.
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A Equations of Motion and Longitudinal Phase-space

Let the synchronous particle arrive at the accelerating gap at a phase ¢,. Then, it always
receives an additional energy of,

: : The subscript 's’ stands for
AE = eV, sin(g,); V, 1s peak rf voltage & synchronous particle 1

Now let us investigate the situations for non-synchronous particles.

Let us define variables for any other particle as,

Revolution frequency: /r=/s T4
0. =0, +Aw
RF phase : ¢=4+A¢=4+y
Momentum: p=p,+Ap
Energy : E=E +AE
Azimuthal angle P 0=0+A0

The azimuthal angle A6 is related to "ds" by,

ds=RA6
Over one revolution this angle 6 changes by 2z radians, while the rf phase ¢ changes
by 27h.
y 27h. Hence, v =Ap=—hAO >

The negative sign comes from the fact that a particle behind the synchronous particle
arrives later in time. But 4r>0.
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aE Equations of Motion & Long. Phase-space (cont.)

The angular velocity o is given by

W= a0 :szﬁ =-l@ __ld_w ! Mz-ld—qj " ¢, is our reference phase angle.

dt dt h dt hdt h dt h dt
The revolution period T'is given by

F_C_1_ AT:_Af:{AC_A,B}:{AC_ 12 Ap} 0 2P i n{ac—%}:{%—%}
ﬁf ﬁJﬂ C 7 p Py Vs Yro Y,
Ap:_psdf:_psdw: p, d¢
nf., no, hno, dt

Further, AE and 4p are related by,

d h
AE = BcAp=w,RAp = ¢ _ AE ——3
dt p.R,
From Eq. 1 the average momentum gain per turn is

(Ap )turn -

Thus the rate of change of momentum is given by
AP, dp _ 2 _ eV in ¢ =

T d T ror

or  27(R p)=eV,sing 4
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For the synchronous particle we get,
2r(Rp), =eV,sing, ——5

Taking the difference between Egs. 4 and 5 we get,
27 A(R p) = eV, (sing-sing) —1 6

Now A(Rp) can be wr'IT’ren as,
A(Rp)=Rp-R, p, = (R +AR)(p,+Ap,)-R p,

zARpﬁRSApﬁAR[Z—p} +RAp = BR} Ap+RApS —(RSAP)
t S t S

d|, AE d | AE
27A(R p)=27—(RAp)=27—| R, —— |=272—| —| ——
7R p) = ﬂd( p) = ﬂdt{ QR} ﬂdt{ } 7

a)S
~— ____This comes from Eq. 3

Thus, the equation of motion in (4E, ¢)-phase space is given by,

d(ﬁtE) - ;’ﬂ eV, (sin ¢ —sing,)
2

dp_ hn_\p_hno, {AE}

dt p.R, B E,




¥ Synchrotron Oscillation frequency and Transition Jump
Eliminating AE in Eq. 8 we get,

d| R dg + ! eV,(sing—sing )=0—9 ~ ~ ~ ~
dt| hno, dt | 2n ,ﬂ @:/\ % ©) @/\
Assume that R, p, 1, o, and V, are all constant (or R S R _ A gl ol
vary very slowly with respect to time. Besides, Ag=¢ N l E/'\ _\/“’ v v
¢, << 1 then the Eq. 9 becomes Paricl gets the
d2¢ N eVOh N, cos ¢S same kick all the

or

=0 ime ' /3 :

dt’ 27w p,R, ? t i< /74: \
2 ‘ : i

19 070, @ - |ln0.c8d g N2

dt 27 p,R

N

The quantity Q. is called "synchrotron oscillation frequency”. For stable longitudinal
motion the synchrotron oscillation frequency must be a real quantity.

Synchrotron Tune: v =02, /o

Consequently, during beam acceleration 7 cosg,> 0. This implies,

y<yr, n>0 . O<¢5s<Z

1 1
because 17 =—-—

y>y, n<0 .. %<¢S<7r yoorr

Hence, during the RF acceleration in circular accelerators we must jump the
accelerating phase angle ¢. > 7-¢., around the transition energy. This is called
“transition phase jump”. This is critical for all hadron synchrotron accelerators.



Hamiltonian Formalism and Phase-space Ellipse

The synchrotron equations of motion Eq. 8 can be derived from a "Hamiltonian”,
H = hit AE? +—=eV,[cos ¢ —cos g+ (¢ — @ )sin @, ] — 11
2p.R, 2
From this the equations of motion will be,

oH :—d(AE) & eV,(sing—sing,)

0P dt 2

OH _d$ _ hn .

ow dt p.R,
Then the longitudinal motion of the particles can be conveniently represented by their
trajectories in (4E, ¢)-phase space . These trajectories will be contours of constant
Hamiltonian given by , Eq. 11. Thus, with,

H = AAE? + B[cosg—cos @, +(¢p—¢,)sin @, ]

H B
_ e B _ : — 12
AE =+ YR [cos ¢ —cos @, + (¢ —¢@,)sin @]

w
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Phase-space Ellipse and RF Bucket

Case of v )y |

v Separatrix: the phase space contour
| /\ separating stable and unstable region

/o

. RF Bucket Sepiara’rr'ix c
| | At | B i
AE | % . o 1T
| ; . ; 1 //%,-—— N\
""'II ﬂ{’z’:’,’l';;" ¢ [ /J\\\\
. Winerr Vel il NI \of 0 ) 27 ¢
j ; N x\%ﬁ
$5=180deg Unstable stable %tﬂ,///
= g Region egion -2 T“’f
ﬂt‘ I I Fig. 6 Stable phase space trajectories

$,=150deg

|
|

; ! Moving !
=0 $=360deg RF Bucket
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Bucket Area BA: The area enclosed by the separatrix and is given by, BA= § AE(@)d¢

To calculate the bucket area we derive an expression for the separatrix. We know that
the separ'a’rr'ix pass through (4E=0, 7~ ¢,). Then,

eVo[-2cos(g,) + (7 —2¢,)sin ¢, ]

9epx

The Tr'ajec‘rory equation for the separatrix is, H = Hsepx and hence,

hi AE? +
2p.R,

o[cos g +cos g, — (7 —¢—¢,)sing,]=0 — 13

The separatrix has two turning points at ¢, and 7 ¢, points, where AE=0. For ¢, =0, the
turning points are, -7and zfor y < yy.

Now we can calculate the bucket area. After some mathematical adjustments we get,

BA— 16\/pSRa)eV o(4)

where, a(¢s>—ﬁ j { —[cos(@) +cos(d,)- (7 - $- 4, )sin(g, )]} dp — 14

BA is maximum at a(g, 0) I for y < y1. Such buckets are called "stationary buckets".
Similarly fory >y, a(g, =n)=1.

1

10
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Bucket Height: This is the maximum height of a rf bucket, given by,
ap _ +\/ 2eVy Y(¢) with Y(g, ) = \/

cos(@,) —E_Tzqéssin(gés) . ¢, =0 stationary bucket
— 15

P

Longitudinal Emittance (LE): The phase space area
occupied by the beam particles in (4E, ¢)-phase space.
Units of LE= eV-sec

Measurement of LE and Beam Height at Constant Energy:
By measuring bunch length A (radian) and rf voltage one can -,
measure the LE of The beam as follows, | AT

LE = /32 LE‘I\/cos(x) cos[ }dx and "Beam Height, AE" Bucket helghtxsm{i}
— 16

Comments: Measurement of LE of a bunch in moving bucket is quite complicated. This
needs precise measurements of 4.

Beam Transfer and Longitudinal Matching: It is essential that in transferring a bunch
from Ring-1 to Ring-2, we should match the bucket heights, i.e.,

V cos(¢g,) _ |V cos(¢,)
hn - hn

— 17

Ring -1 Ring -2
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e Beam Acceleration

Beam Acceleration: After the beam is captured in matched stationary rf buckets the

synchronous phase is changed in sync with the momentum ramp to accelerate the beam.

The condition to be met is,

18

Momentum ramp Z’—p = el sin(@,) Matched rf voltage and phase with BA/LE ~ 2.6
The synchronous angle must satisfy
O<¢s<§ fory<7/Tand§<¢s< fory >y, — 19

otherwise the net acceleration force cancel out due to synchrotron motion.

12
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Barrier Buckets

So far we have talked about rf buckets formed by sinusoidal rf

waves generated by

resonant rf cavities. About 25-years ago a new type of rf system called “barrier” or
"wide-band" rf systems were developed at Fermilab by Jim Griffin. These systems can
produce arbitrary voltage waveforms and have been adopted in accelerator operation at

various places in the world.

The Recycler at Fermilab uses a barrier rf system exclusively for all of its rf

manipulations. A set of solid-state power amplifiers are used to
v

energize these cavities.

The Hamiltonian for an arbitrary barrier wave form ’—‘ H ’ A
is given by, 5
t i t
H=——1_Ag? —LJeV(t)dt — 20 H ’ v i
2IBSES TO 0 < T PI
For beam in rectangular bucket the AE and LE are given by, Synchronous
AE :
particles
AAE _ 2 IBS2 E, eV T, _ I | Barrier Bu:ke‘i‘s__;,.,_é;_v_
|77 | TO . TR
g 87 || S
LE =2T,AE+ > AE
3a)sﬂs ESQVO — 22 SXTE T T

T, = Gap between rectangular barrier
T, = Extent of beam penetration into the barrier

WCM signal

—~ T
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There are a number of longitudinal beam dynamics simulation codes available for
accelerator design and applications. For example:

1. ESME- Jim. MacLachlan, Fermilab, http://www-ap.fnal.gov/ESME/
This code is widely distributed and is available on web

2. TIBETAN - G. Wei, from BNL

3. LONGID - Shane K.

4. ACCEL- John 6., Los Alamos National Laboratory

ESME uses the difference equations

E,=E,,+ e[V(¢s,k + h‘gi,k) - V(¢s,k )]

_ with bk ~|1 2 AE
1) . {mﬂs E |

N

Uik

T k1
Q=P =8, = G+ 27(

Lk
Ts,k z-s,k ’

The subscripts and label the quantities related to particle and to synchronous
particles, respectively. The A-th energy increment is at the end of the A-th turn.

This is a 2D program. Will handle space-charge effects, beam-loading compensation,
cavity impedances, beam pipe effects etc.
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Beam Diagnostics

Beam diagnostics is an essential constituent of any accelerator. Without proper
diagnostics we are blind. “"An accelerator is just as good as its diagnostics.”

Beam diagnostic devices can be classified broadly into two types

a.Destructive
b.Non-destructive

The usage of these depends on what we want to accomplish.

Signal processing, associated electronics, analogue signal or digital data
treatments, are also subjects of great importance. You will hear from Dr. Okugi.

Below table (H. Koziol, CAS94-01) gives a general list of various devices commonly
used in accelerators.

16



transverse | longit.

- <.

- U U = # E
PROPERTY MEASURED —=|Z | = | & |2 |5 |2 | o |7 [E | Effect on beam

HEEE RIS

AN HEHRERE

Sl2l@|gl@|g|o2|l2IN[=|+]D
Beam transformers @ ® o X
Wall-current monitors @ oo X
Pick-ups o @@ ® e X
Faraday cup ® X
Secondary emission monitors o e|0|@ . X | X
Wire scanners o|e|@ . X
Wire chamber ® e X | X
lonization chamber ® X | x
Beam loss monitors o (o |o . X
(Gias curtam/jet L JLBE X
Residual gas monitors ®| o |0® X
Scmtillator screens ® e X | X| X
Scrapers, targets ® e|® X
Schottky scan o @ s O @ X
Synchrotron radiation ®|e e e X
LASER-Compton scattering ®o|® ®| X
()-measurement @ X |X
Emittance measurement ® X| X| X
Measurement of energy o X|X] X| X
Polarimeter ®|X X

Diagnostics Devices & Beam Properties Measured

Fffect on beam
N onone
— slight, negligible
b perturbing
D destructive

Next, we will touch
upon basic principles
of some of these.

17
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el Beam Intensity Monitors

Beam Current Transformers:

This device measures the total number of electric charges in a burst of charged

particle beam.
Principle: This consists of a ferromagnetic

core with a high permeability metal tape
wound as shown here. The beam is made to
go through as shown in the figure.

A burst of beam acts as a single turn primary
Cs % R winding and the induced voltage in the
- secondary is given by,

Secondary V=[—%t dl,

coil dt
By tferminating the secondary using a resistor

| one can measure the induced voltage- which
test i beam is proportional o the beam current.
primary pulse bunch
secondary J /\/— The band width of these devices are generally
~100MHz.
droop time

rise time
‘t","\fLCs T4-L/R

Fig. 4 Signal from real transformer.

18



JE
;W

Direct Current Transformer:

Beam Intensity Monitors (cont.)

Principle: In the absence of particle beam

CII“CUIT\’A\ modulalor i through the two ferrite rings, F1 and F2,
. = i the induced voltage Vs in “Circuit-B" due
7 / S to an AC (~100Hz) in “Circuit-A" will be
¥ 14 zero. A charged particle beam through the
Vs %;gg?mng ferrites introduces bias in the excitation of
Circuit B— - the cores. Then, Vs # Q., which in turn |
asuremen changes the compensating current. This
~—Loower sapely effect can be used to measure the DC beam
Fig. 7 Basic scheme of ade beam transformer and rectangulr hysteresis of core material.— 1NT@NSiTY. With an accuracy better than 2%.
beam
Faraday Cups:
This is a beam stopper and is the earliest device 1 r
used to measure the total amount of charges in -
the beam. Use of this is a destructive technique. j_

IFaraday cup.
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Wall Current Monitors (WCM)

This device is primarily used to measure the line-charge distribution of beam bunches
in an accelerator or beam-line. This can also be used as an intensity monitor.

Principle: A charged particle beam , I, in an accelerator is always accompanied by a
"wall current”, I, on its beam pipe due to its image charge, so that,

[ =-I,

A gap bridged with resistors can be used to measure this wall current.

V=Iw/Z cable ‘(Q
puncted shiel it~ T o o IR
M
f .b o : — }
——a- >
vz | Ve —

a. chomber fnsert

a) Principle of wall-current monitor. b) Separate pick-up of signals to observe beam

position.
Examples: - WCM as Intensity Monitors:
AA A Mountain Range By integrating the area under
Sl AWA — ... | each bunch one can measure
s the total charge/bunch.
> Individual bunch intensity in
: the Tevatron and in the MI
time . .
are measured adopting this
Beam bunch in technique.
barrier buckets

20
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Beam Position Monitors (BPM)

This is used to measure the transverse beam position in a beamline and accelerators.
The beam has to be bunched.
These devices are available in three types,

1.electrostatic, === Widely used in circular

2.Magnetic accelerators and beamlines
3.electromagnetic

The simplest form of the electrostatic BPM is a rectangular (or cylindrical) box cut
diagonally. For example,

MI Cylindrical type BPM

Principle: As the beam passes through the BPM it will induce more electric charges on
the metallic electrode closer to the beam than the other. Then,

_Ww UR_UL
2U,+U,

These type of BPMs, properly installed, can be used to measure the beam position
either in horizontal or vertical plane in the ring.

; w = width of the BPM

X
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Simultaneous measurements of H and V coordinates can be done using special BPMs
like,

MI BPM inside a Quad

These types of BPMs are used in the MI and buried in the MI quadrupoles.

With digital electronics, we can measure the beam positions fo an accuracy better
than fraction of mm. For linear collider at collision points one need better resolution.

In medium energy synchrotrons where rf frequency changes in a large range, the
BPMs are used to control the beam acceleration.

In e+ and e- machines, BPMs with "button " electrodes are used. The sectional view of
these detectors look similar to that shown in Figure A
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Beam Profile Monitors

These devices are used to measure horizontal and vertical beam profiles in an
accelerator or a beam transport system. This technique is semi-destructive.

Secondary Emission Monitors (SEM):
Principle: This uses the principle that the electrons are liberated from the surface
under the impact of charged particle beam, thus producing a flow of current.

This type of beam profile monitor consists of an array of thin ribbon of special
materials with high secondary electron emission coefficient.

I A Data from Debuncher to

beam

Clear'mg / aaaaaaaaaaaaaa
eleCTr'OdeS X-PLOT GAIN 1 v-FLOT GAIMN 1
a . b. ... Horizontal | | Vertical 1
Sideway view Front view profile profile
A signal : |

il ' l! 1J_-_,
cﬁaﬂm; number SiG= ];: 79“ =lv'TDTEQL lt39
C. |
Profile This device is quite sensitive to very low intensity beam.

For example in the above figure I~1E7 pbars 7

L~



R

Beam Profile Monitors (cont.)

Multi-wire Chambers (MW):

Principle: This uses the principle that the electrons are liberated under the impact of
charged particle beam, thus producing a flow of current. Difference between the SEM
and MW is that the latter is not a surface phenomenon.

Many of the Fermilab MWs in MI use gold plated tungsten wires (dia. ~75um) with
Imm pitch.

HORZ

MIJ.IESE BI-JAH-2@@6 14:14:87,318 FS .633%

Move bac
and forth
>

Ti strips (Pitch=1mm,
0.2mm(w), 12.5 um (depth))

24
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Beam Profile Monitors (cont.)

Wire Scanners:
Principle: Instead of multiple wires as in the case of SEM, one can use a fast moving

single wire through the beam and get the beam profile by measuring the position of the
wire as a function of the flow of current.

Flying Wire:
Principle: A single wire (of a few micron thickness of carbon) is made to fly through a
circulating beam. The scattered particles are detected using scintillators.

>

+ El 1 Hormcest sl Frzlem E1l Mo Bl Proimm El T Forosdsl Prries
a1 a8- Ln-

o a0 o :'ﬂ i D] o o= E; 'r: T Gadi| .o | BE- H -Ibﬁ Talu| oo

+ lﬂ':i:a.n r1 11'3’4’ 1 oeel £oor

< LE= ] £ -|-|? LI

(o] da - JJ. ' dal : e o lJi| 'EL

& on- !|, nx- - ' nz-

8 dd- J di- “Ffr ,'i-- oa- ..,IF \-.

m"“'llllllll"”_l 1 1 1 PO e TR TR TR TR R T

Ll =058 i 50 dd Y40 ER 11 1] g 193 s{a 14 Lo Sl 30 40 948 60 Ta

Wire Position ———

By gating the data this device can be used to measure bunch by bunch beam
profile in circular accelerators.

25
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Beam Profile Monitors (cont.)

Ion Profile Monitors: (non-distructive device)

Principle: As a charged particle beam circulates in an accelerator

1.It ionizes the residual gas molecules in the beam pipe. (The typical vacuum of an
accelera‘ror |s ~10-7 to0 10-8 Torr).

~ ™l

e ' ' accelerate towards a micro-channel plate which is at a few
F = - ,‘, = 100G Y
N ETT T : i cKs i
Kt es release many electrons for each ions that stricks it.
4 K llected in an anode strip which gives beam profile similar to
}ig
I
“T ,MCP
7
E/- ‘”".’.':..';;' &g- ov |
x " strips Aj>! Example: B _% v

O03totmm)
t
Illll electronics §
-I. ll-- S

Beam profile data

¥ 120000

Y 1100004

taken during the =z -
m’""e beam acceleration =
in the Fermilab o .

Main Injector
from 8-120 GeV

so000 -8
40000 - [
500008

|

20000 -
1

|
10000 -§881

i E
HO s s
0 10 20 30 40 50 &0

Channel
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Beam Profile Monitors (cont.)

Beam Scrapers:

Principle: The beam loss data from an incremental destruction of the beam in a storage
ring using scraper can be used to determine the beam size.

/1o

xorZ

dn/da

0

Fig. 26 a) Scraper with four blades for horizontal and vertical measurement.
b) Beam intensity vs. blade position. ¢) Amplitude distribution.

27
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Beam Loss Monitors (BLM)

These devices are used to monitor beam losses during beam transport, storage and
acceleration. They are quite critical in funing the machines and protecting the sensitive
devices in the accelerator.

- gas i /1y
bearn

BLMs are indispensible devices in the safety chains.

plateau

These come in many varieties. For example,
1.Ionization Chambers
2.Scintillator plus photomultiplier

Tonization Chambers:

Principle: This is a gas filled thin-walled chamber with
a collector electrode inside. Typically, one uses argon
gas. As a particle passes through it the gas gets
ionized and the electrons move towards the anode
and current can be measured. This phenomenon can
be used o detect beam loss in an accelerator.

v Beam loss monitor in
signal MI-RR pbar extraction LAM

photomultiplier  Photomultiplier immersed in
~ A~ » . a scintillator oil is a very
Tl e scintillator oil . .
R RO inexpensive but very
sl p—— paint can effective and fast BLM.

28
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Schottky Detectors

Principle: A single particle in a circular machine would produce a delta-function type
voltage pulse on a pickup electrode once every revolution period. In the frequency
domain, this appears as set of lines equally spaced with a spacing of revolution
frequency. If there is more than one particle with an energy spread then in time
domain it looks like random distributions of particles in the machine (hence name
Schottky signal). On the other hand in the frequency domain, it looks like line equally
spaced pulses with spacing of revolution frequency.

Longitudinal Schottky Signals

Time domain Freq. domain
Single Particle ina I | I | ] l
circular machine a | . I SV | | I | s
o 7 2 3 4 5 I 6 1 2 3 4 5 e
signal
Many Particle (with _ Freq. domain
Ap # Q) in a circular Just noise ﬂ /\ AN
machine , ‘ : : N\t

o] 1

Following features of the Schottky spectrum is quite relevant to beam diagnostics

1. Area OC the beam intensity and is same for all bands

2. Band width oC /1 = L with A_p = lg . can be used to measure 4p

Srew p nf 2
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Transverse Schottky Signals

Principle: The particles in a circular machine have also got betatron oscillations about
the closed orbit with an oscillation frequency=tune of the machine. Consequently, the

Fourier analysis of the signals from an ideal position sensitive pickup detectors should
show two peaks symmetric to the central peak with their spacing such that

Ssehoury = (1 EV) f,,, where n = harmonic number of the peak and v = fractional tune

Single Particle in a Time domain Freq. domain
circular machine with
betatron oscillation a. | I | l | j L b H | H . H | H . H . ‘ff_
o 7 2 3 4 5 ey 0 1 2 3 4 5 lrev
M ticl ith .
b g es e | wvaise |
0 H 2 rev

Following features of the transverse Schottky spectrum is quite relevant to beam
diagnostics

1. Area under the side band oC emittance of the beam
2. The distance from the center oC fractional tune of the beam

3. Width of the side band oC tune spread

30
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Schottky Detectors (cont.)

RF Ovutpot Port

AMPlitude (dBm)

AMPlitude (dBm)

Figure 1.

A Longitudinal Schottky Pickup

Pbar Ungated Recycler Schotthky

a7 26-87 1346

HU b . (D m
LIS M )
AR VTN B D
v Vi L/ oL N
“ e YL

Freguency C(kHz?
T
HL

W1

N

-28 -1 -4 4 12 28
Freguency tkHz?

-28 -12 -4 4 12 2@

-48 -24 -8 8 24 48

Freguency CkHz?

F_reu=83811.224 Hz
Intens= 17.756 Ell
Dpi=sigi= 2.6136 MelWso
Dpi 9@y 1= 7.9924 MeWs o

emitllic35% = 43,1547 eV¥-

Tsepl= 4.8713 usec
H_tune= B.4558

H_emit= 4.418 p-mm-mrad o

V_tune= B.4884

Voemit=  5.334 p-mm-mrad E

Beam =21.58% E11
h_auyg = &4

-28 -12 -4 4 12 2@

|
o
o

Freguency CkHz?

|
]
=

YL

Yigm )

'

ude

i

1

ARIIRN

|

1 gl b s g
-2 -1 -4 4 12 2e

Fregquency tkHz?

HU
VL | Transverse
HL | Schottky data

VL

Area of these Transverse
distributions emittance

Longitudinal
L= Schottky data

Area of these
distributions

RMS width oC Energy spread

OC Beam Intensity
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Practica

Closed orbit, Dispersion Function,
Chromaticity,

Issues

Resonances

Chandra Bhat
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Dynamics of Particle Beam with Momentum Spread

So far we have investigated dynamics for monochromatic charged particle beam;
i.e., with 4p/p=0. In reality, the beam will have finite momentum spread. Now, we will
extend the formalism for a particle beam with Ap/p#0.

The equation of motion we need to use is the inhomogeneous Hill's equation,

u"(s)+ K (s)u(s) = ° —N
Yo,

we will drop the subscript on p, anyhow it

w n

is a function of "s

In this case, the particles with relative momentum deviation are “less” or "more”
strongly bent than the reference particle. Consequently, they move about a different
orbit that deviates from the reference orbit.

The general solution to this differential equation may be written as shown below,

Complete solutions to u(s)=u,(s)+u;(s) Particular solution to 12
homogeneous Hill's S in-homogeneous Hill's
equation equation

It is obvious that, for a fixed Ap (8= Ap/p) if u, is a solution, then nu, will be a solution
to ndp/p. Therefore, we normalize u; w.r.t. 3, i.e.,

u,(s) The function D(s) is called 13
——=D,(5) “dispersion” function.

and write our general solution as,
One assumes that the radial
u(s) =u,(s)+D(s)0 = C(s)u, +S(s)u,"+D(s)0 _ distance from the design
| 4| orbit is proportional to &
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b Beam with Momentum Spread (cont.)

Now by substituting for u(s) in Eq. 1 and equating the homogeneous part to zero, we geft,

1 The function D(s) is defined as a i
" _ 1 particular [
D"(s)+ K(s)D(s) solution for the inhomogeneous equation 0

This describes the momentum-dependent part of the motion. It is important to
note that there is no dispersion function unless there is at least one dipole magnet
in the beam line.

The initial conditions for the homogeneous equation were,
C,=C(s=s,)=1,85,=8(s=5,)=0,C'y=C'(s=5,)=0,8",=8"(s=s5,) =1
— 6

For dispersion function we chose the initial conditions as
D,=D(s=s5,)=0=D"',=D'(s =5,)

u(s) and u’(s) are related to their initial values by a linear transformation as discussed
earlier,

u C § Du u
u C S|u D
e A ]S 2] ]
u'| c' S'|u'| D'\
S=s §=8 S=8 é‘ - O O 1 é‘ - 5 -
It can be shown that the dispersion function can be calculated from
s C(¢ s S(t
D=S@f Ra-sw| " Sa —{8
op(t)
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25 Beam with Momentum Spread (cont.)

(Transformation Matrices)

Drift Space: L -0, k=0

Po 1 L o
M={0 1 0 9
0 0 1
Pure Quadrupole: Dispersion = 0 since 1/p=0 and 6=I/k
horizontal focusing horizontal defocusing
cos 0 sin 0 0 cosh 6 sinh 0 0
Vi 7
M, = ~Jksind cos® 0| and M, = Jksinh & cosh & 0
0 0 1 0 0 1

Dipole Sector Magnets: k= 0 no focusing ¢ =I/p

cosp psing p(l - cosy) 1 £ 0

— 10

A arc length £
90°- ¢ % 900 M

11

' = —%sin;,:- Cos @ sin ;M=) 010
/ 0 0 1 001

In non-deflecting plane the magnet behaves like a drift space.

Similar transformation can be derived for FODO cells including dispersion
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closed orbit

The design orbit of a circular machine is a closed curve that goes through the
center of all quadrupoles. This means, a particle with nominal momentum p, that
starts at some point with

u,=0  and

u’y=0 radian
will move on this orbit for arbitrary number of revolutions. Such an orbit is called
“closed orbit". In case of a beam transport system this is called "reference path”.

Claced

s—uv-.n.-vl

//;:-Qé( Orbit ™ /N Reference In an accelerator, the
( “\ 7 NN Orbit transverse motion is divided
Homogeneous B K V-x} ﬁcﬂLE::aQ into
Magnetic field oy 4 - 1.Closed orbit which closes
\ _/ J <7 e anitself
vPar’rld&/W 2.Small amplitude betatron
§ Withslope motion around the closed
Closed Or'biT.

< Orbit

In any case, the closed orbit need not have a well-defined shape because accelerators
have a number of horizontal and vertical dipole correctors.

However, a particle with p=p, but with "non-zero displacement” and/or slope with
respect to the closed/reference orbit will conduct betatron oscillations. 36



35 Closed-Dispersion Trajectory

Now consider a particle with p=p,. For this particle the closed orbit is displaced from
the ideal closed orbit. Also, we recall that the radial distance of this particle is

roportional to 3.
propert up()=D)5  —12

up(s) is called "off-momentum closed orbit". In weak focusing machine the dispersion is
constant, while, for a strong focusing case the dispersion is "s” dependent.

A particle with p=p, satisfies the inhomogeneous Hill's equation and the total
deviation of the particle from the reference orbit is written as,

u(s) =uyz(s)+uy(s) — 13
describes betatron / \devia‘rion of the closed orbit for
oscillations around off momentum particle

Since K(s) is a periodic function of s, we impose D(s) and D’(s) to be periodic as follows,

D(s+C)=D(s) , e .
In literature. a periodic dispersion
D'(s+C)=D'(s) is of ten denoted by 7(s) — 14

The closed orbit condition for the dispersion function is strictly required only for one
complete revolution, where C is circumference of the machine. Though the local
periodic closed orbit condition is not necessary, it helps for lattice design.

Remark: For each particle energy only one equilibrium orbit exists in a given
closed lattice.
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Closed Dispersion Trajectory (cont.)

Without getting into the detailed derivation we simply state that the closed
periodic dispersion function can be written as,

n(s)=D(s)=—= ps) ST “ ﬂ(g) cos[v(g(s)— ¢(t) + )]dt v is the tune of the
Yo,

2sinzv circular machine.

15

The dispersion function written in the above form has two important implications:

1. The particle trajectory receives an additional kick only inside the
bending magnet, i.e., p(?)=0
2. To get stable orbit the tune v=integer.

The second implication clearly states that "a finite dispersion exists only if the
number of betatron oscillations per revolution is different from an integer.”
Physical interpretation of integer v:

A particle with 4p will receive a different kick angle as compared to a particle on
the closed orbit as it enters a dipole in a ring. If v is an integer then this particle
arrives at the same point with angular deviation from the previous kick angle and
adds up coherently from turn to furn. Soon the deviation of the path of the particle
becomes too large to be confined within the beam pipe. This brings about the
fundamental phenomenon of resonances in accelerator physics.

Remark: The dispersion function as presented above is very useful for
understanding the oscillatory behavior of closed orbits in presence of dipole errors

or momentum errors. However, numerical calculations of dispersion function will be
easier with matrix formalism.
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Closed Dispersion Trajectory (cont.)

The transformation matrix for the dispersion function can be obtained by substituting
Eq. 13 in 7 and with some mathematical arrangements we geft,

no C S D|no n C S Djn — 16
77'5 — C' S' D' 77'5 OI. 77' — C' S' D' 77'
o 0 0 114 o 1 0 0 1|1

s=5 §=Sg s=s §=Sg

Once the 77.and 7"have been determined at one point s,, the values at any point can
be calculated.

Using the periodic closed orbit conditions applied to the circular accelerators we
can show that,

_(1-8)+SD' (1-S")+SD'
- 2-8-C  4sin’av | Again integer fune values
, C'D+(1-C)D' C'D+(1-C)D' are to be avoided.

- 2-8-C  4sintav I ——17

Beam Size:

We have, u(s)=u,(s)+D(s)0 for the trajectory of a particle. Averaging the

square of this expression and finding RMS value, we find the rms size of the beam

due to betatron motion and momentum spread looks like

o =Lips) | s
T

A reminder: We have to remember that u(s) stands for both x or y plane. Hence

we have to deal with betatron function, dispersion and beam sizes in both 19

horizontal and vertical planes separately.
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The most general form of transformation matrix including both horizontal and

Most General Formalism

vertical degrees of freedoms becomes,

Here we assume that there is no dispersion in vertical plane. This is typically true

= =

= O

<

| Cx Sx Dx
Cx ' Sx ' Dx '
[0 0 1
0 0 0

0 0 0

0
0
0
¢,
C,

in most of the horizontal circular machines.

0
0
0
5,
S,

'

S S R T

<

_SO

- 19
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Momentum Compaction Factor in Transverse Dynamics

Consider a particle with a fixed momentum p, which moves along a closed orbit in
magnetic field. Then the following relations can be written,

§:27r, l:iB

P P Po

Perpendicular

q
and Py = E I BPerpendicular

ds

20

Now introduce another particle with a momentum offset of Ap . Its closed orbit
must be different from that of with p,. By varying the p, the length of the closed

orbit can be varied, i.e.,

Lzﬁds

can be changed. We know that, the differential trajectory length is given by,

do = a’s{
e,

or AL = J;x—Dds
Yo,

In this case AL corresponds to the closed orbit dispersion 5
trajectory, y— _ p(s)2P and substituting in ab tion
. x=D(s)5 = D(s)= and substituting in above equation

D a0y

we geft,

B
AL_1gD@), A |1
L L% p p

-~/

Momentum compaction factor

Ap

pP

1+x—D} or L+ AL =j.>da=j{

|

1+ 22
Yo

Jos

Herizental Plane
-

1—.—-_._____dG_

R |

Hodsy g
1

dx

Small angle
approximation

G

S Reference
orbit

1
o = 1§

D (s) s

p

Momentum compaction factor 41

& Dispersion function



e Linear Deviations from the Ideal Lattice

So far we have established the basic principles underlying the single particle
accelerator design. In reality, we have to deal with electric and magnetic systems
having non-uniformity (called systems errors).

Dipole errors or Steering errors: Closed
For a circular accelerator there is a closed orbit Orbit
(ideal orbit) by design. For a particle with non-zero
emittance (i.e., x#0, or x’#0 or both) we expect
betatron oscillations about the closed orbit. Suppose

focusing

that a particular dipole magnet in one of its arcs has Ear‘ricle
a field slightly different from its intended value and ~ With slope
gives a single steering error, Point of
o= AB ] = ABZ __ 1921 Dipole error
p Bp

AB is unintentional uniform field over length “/" which is different from everywhere
else (treated as an error).

Now let (x,x,’) be the coordinates of a particle (which would follow reference
orbit or has a betatron oscillations) just outside of the special dipole. Let M
represent the single turn transfer matrix for the ring. Then, for stability of the
particle we demand that after the particle goes through the error region the
coordinates do not change. This means,

|:x0':| _ M|:x0':|+|:0:| _ XO(COS ¢+a0 sin ¢—1)+X0'ﬁ0 sin ¢ =0 with ¢ = v

X,(=ysin ¢g)+ x,'(cos g +a,sin g —1)=0 > 42
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Dipole Errors(cont.)

Solving for x,and x,’, we geft,

4
ooy By cos v % AWA A AN
2sin§ 2sm zv so\/ \J \/ v \/ v vLJrSo

— 23

Q[Sin TV — & COS m/]
2sin v
These equations also show that dipole error in an accelerator ring prohibit integer

tunes for beam to be stable.
If the dipole error is distributed around the ring (which is generally the case), then

the closed orbit can be obtained by integrating over all dipole kicks.

Xetosea () = 2S'IB(S J}/,B(l‘ —COS[Z‘(¢(I) ¢(s)‘+7rv)]dt — 124

Conclusions: the dipole errors and of f momentum particles make integer tunes

Xy =

forbidden in a circular accelerators.
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Quad Errors

Quadrupole Errors:
Let K,(s) be the design quadrupole strength and 4K be the quad error at a point in

the ring. The with 4p=0 the equation of motion becomes,

u"+ Ko (5)+ AK (s)]u = 0 —125

If this error is local and at one point in the ring then it can be shown that the change
in phase advance at that cell is

COS ¢ — COS @ = - 5,3 AK ds, sin ¢, error is occurring at s=sl
26
If the perturbation is distributed around the ring, then the change in fune is given by,

_4¢ _ 1 —27
Av=—"=— fﬂ(s)AK(s)ds
Further, a gradient error changes beta function as follows,
AB(s) = ﬁ (s ) § B()AK cos[2/(¢(t) — §(s)|+ 2xv)]dt —— 28

Thus, as v=>n/2 with n= m’reger AB~>x or the beam becomes unstable.

Conclusions: The quadrupole errors make half integer tunes forbidden in circular
accelerators.
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2 Chromaticity

The particles with different energies in a beam will be focused differently dependent
on their momentum. The lowest order chromatic perturbation is caused by the variation

of the focal length of the quadrupoles with particle energy. This leads to a shift in tune
of the machine.

Ap>0 _ We know that for large p, the quadrupole strength,
------ e Before Corrections 1 qg (S)
N K(s)=k(s)+—=k(s)= — 29
P’ pP
N
AR =K pp 98 Ny B8 AP gy AP
dp p P Po P,

Formally, this is same as a gradient error, discussed earlier in connection with quadrupole
errors. Hence, o calcula’re the shift in ‘rune

— §3ﬂ<s)AK<s)ds ~ ——§ﬁ<s>1<<s>ds

Ap —— 30
Py

with = —4—§ B($)K (s)ds — 131
T

The quantity & is called "chromaticity” of the machine. For a “linear” lattice this
quantity is always negative and & is called "natural chromaticity”. The chromaticity is
integral part of a circular machine.

Examples: Natural chromaticity of Main Injector at Fermilab ~-33.7, that for
Recycler it is -2 (by design)
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Chromaticity (cont.)

Control of these chromatic perturbations in circular machines is important for the
following two reasons

1.Avoid loss of particles due to fune shifts into resonances

2.To prevent beam loss due to “head-tail instability”

The chromatic aberrations are corrected using sextupoles. By means of this system
higher energy particles are focused more and lower energy particles are defocused.
Thus, all particles are focused at one point.

The consequence of this is the betatron frequency becomes dependent upon the

momentum of the particle.
Consider a particle with 4p=0 moving without betatron

A > . . . . .
0 After Corrections  ©SCillations on the closed dispersion trajectory.

Ap
Xy (8)=D(s)— — 132
z \’\ p(5) ( )po
Ap=0 Now let us infroduce a sextupole magnet with D(s)=0.

The sextupole filed at x=x,, in the horizontal plane is,

1 I |

Notice that the particles with 4p=0 on the reference orbit
are not influenced. With the polarity shown in the figure

_N)\E_/’ . xp for /N xp for the sextupole deflects electrons with 4p>0 tfowards the
T T central orbit and those with Ap<0 are deflected away from
s NI oot for 6o 0 it. Therefore the closed dispersion orbit calculated for a
N S Orbit for dp= 0 linear machine will change with sextupole magnets in it.

Orbit for 4p< 0
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Chromaticity (cont.)
Is this a problem? No! why?

Now consider a particle that executes betatron oscillations around the closed dispersion
orbit. Let 4p>0. Let 5x and 8y be the small deviation from the closed dispersion orbit.

Then, x=x,(s)+0x

y=yp(s)+oy=0+0y

The corresponding magnetic field components can be written as,

' '

! ' A
B, ==y =Sl + 80 =5 Sy 4 gyl = ) 4 g D(s) b

/\ Po

o ' o Ap Causes deflection of
B =gxy~g'xpoy=g D(S)p_o@ closed dispersion orbit

—134

35

Thus, the sextupole acts like a position dependent quadrupole with its strength
increasing with 4p and influences both horizontal and vertical motion, i.e., it
intfroduces coupling between horizontal and vertical motions.

The equivalent quad strength arising from the sextupole magnet is

g'xD

A !
q = m.D(S)—p; m=48 — 136

Po Po Po

By properly choosing its strengths one can compensate
for chromaticity.

Gy === K ) - D) B
T
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Chromaticity (cont.)

In principle, single sextupole magnet is sufficient to compensate the chromatic
effects. In practice a single sextupole magnet introduces aberrations. In order to
avoid this, Two families of sextupole magnets - one in the H-plane and another in the V

plane - are used.

Without any proof we make the following statements:

1."The adverse effect that would be introduced by a single strong sextupole magnet in
a circular accelerators can be minimized by using a large number of sextupoles with
moderate strength distributed around the ring.”

2.The sextupole errors in the ring introduce resonances at third-integer tunes.

Nominal Misalignment Roll
Y Y
aF i 4 QF A Y
S \Q S \
N | s N[ (s
Entrance Focal Entrance Focal Entrance Focal
point point point point point point

Positively charged beam into the plane of paper

3. Misalignment and/or role-angle of quadrupoles also introduces coupling
between horizontal and vertical motions. 48
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Example of Design Lattice
MI30

—.-Huq-_-_.-_:l__e__‘__mh

MI22 | =,

f&ﬂ MI32 ‘.
{‘-"‘gt‘
MI40 fi MI20

I

/
| 8GeV to 150GeV ;
E Main Injector Layout
! MI-150pbar /| MI10
MIBO |* Injectionline df
f‘ﬁk‘ MI8 Injection

Beam Transport line

MI62 |

g MI‘F’Z MI60

MI150GeV S S

proton injection line
— | Tevatron|
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Example(cont.)

3

Permanent Magnet 8 GeV Proton Line

()

_ﬁha_x_r

400 800

Path Length (m)

200

Lattice functlons for the § Ge¥ line,

Figure 2.4-2{a).
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Y [mm]

Example(cont.)

400
tttttttttt (m)

Figure 2.4-1(b). 407 mm-mr beam envelopes and magnet apertures.
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Example(cont.)

R

40w Envelope & AB/B=1.0% Systematic Error

Y [mm)]

X [mm]

300 400
Path Length (m)

Figure 2.4-4(a). Trajectory and envelope with systematic field error of 1%.
momentum spread dpip = 0.2%.
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Tune Space and Resonance Diagram

So far we have learnt a few aspects about the resonances in circular machines
1.Dipole errors - integer resonances (i.e. v=n, integer)

2.Quadrupoles - half integer resonances (i.e. v=n/2, integer)

3.Sextupoles > third integer resonances (i.e. v=n/3, integer)

Also, sextupole or misalignment of magnets like skew quadrupole fields give rise to
horizontal and vertical coupling.

This leads to a general condition
my +nv, =/ |m|+|n| = order of the resonance.

where m, nand [ are integers. The operating points (1,,v,) have to be chosen in a
reasonable distance from resonance lines.

Plotting all straight lines for different values of m, n 3 41 Y
and / in a (v, ;) space produces "resonance” diagram. \\
Particles do not survive on integer and half ._\‘\_
integer resonances at all. BuT, on other m] \\ | stinteger
resonances particle may survive. N A resonance |V,
Stop-band: the region of instability in the resonance \x\l/ stopcband
diagram i/ i BN
Stop-band width: Width of the unstable tune = | \: \

3,3 2 m\:g 4.3

n=0 n=1 v, 4
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Resonance Diragram (cont)

Linux GxPA 1 lUntitled
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55



R

Main Injector Tune Diagram
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Tevatron Tune Diagram

Lirwx GxPE 1 Untitled

-0 0 158

1 1 1
= o= W B Mo =

B 12233
I LE P35

2 182335

7Th r‘der' 3 gipan
rResonance

b b
=
=
g
=
m
Ll
L |
="
L
1
-

-4 2 233

=8 2 g3

|
0|

W G

la 2 835}

O 11 1 235}
& 52357
=g pr amgl |

M 12 & 235

Lon T e R v R S A

ntal ftune

Hrpr i




R

Computer Programs for Lattice Design

Nowadays to design accelerators or beam-lines we do not have to go through
these laborious mathematical matrix transformations. To design accelerators
and beam lines a humber of computer programs are available in the market for
free.

1.MAD - methodical accelerator design, € tracking program

2.SYNCH ??

3. TRANSPORT

4 Turtle

5.TEAPOT < tracking program
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