Developmental Studies of High Current Linac for Indian ADS program P. Singh Bhabha Atomic Research CentreMumbai, India

Plan of the talk:

- **1. What is an Accelerator Driven sub-critical reactor System (ADS)**
- **2. Why is ADS so important to us?**
- **3. Accelerator Configuration**
- **4. Developmental studies of high intensity proton linac (20 MeV LEHIPA)**
- **5. Status of the project**
- **6. Summary & conclusions.**

¾**At the present consumption level, known reserves for coal, oil and gas correspond to duration of:**

¾**Coal: 230 yrs**

¾**Oil: 45 yrs**

¾**Gas: 65 yrs**

¾**Nuclear Power appears to be an inevitable option as future energy source; but disposal of nuclear waste is an important issue of concern in** harnessing nuclear energy through "critical **reactors", which needs to be addressed satisfactorily.**

Annual yield of Plutonium & Minor Actinides and (some) fission products in spent fuel from 1 GWe LWR plant operation.

FIG. A-3. The ranges of levelized costs associated with new construction as estimated in seven recent studies for electricity generating technologies in different countries (PV: photovoltaic).

IAEA report-2006

World Thorium Resources

Country Reserves (tons) Australia 300,000 India 290,000 Norway 170,000 USA 160,000 Canada 100,000 S. Africa 35,000 Brazil 16,000 Other Countries 95,000 World total 1,200,000

- ¾Produce Energy
- \triangleright Transmute the high level long-lived radioactive waste ¾Can use efficiently Thorium

resources

SCHEMATIC OF ACCELERATOR-DRIVEN SYSTEM

Accelerator-Driven Sub-critical reactor can be used for:

- **Generating nuclear power with Thorium as fuel,**
- **Transmutation of nuclear waste discharged from nuclear reactor of U-Pu fuel cycle.**

Most cost effective way to produce neutrons

- **By Spallation process with GeV energy protons striking on high Z target.**
- • **Number of neutrons per proton per Watt of beam power reaches a plateau just above 1 GeV.**

$$
P_{thermal}(MW) = E_{fission}(MeV)I(A)\frac{V_s}{V}\frac{k}{1-k}
$$

Proton Energy : 1 GeV $v_{\rm s}$ = 25 neutrons/proton $v = 2.5$ neutrons/fission $P_{electrical}$ = 500 MW (1500 MW (th)) K=0.95

Some of the ADS Projects around the world

The technologically most important and challenging part in ADS scheme is the High Power Proton Accelerator.

The main requirements from this accelerator are:-

- \rightarrow High Reliability
- High Beam Power
- **CW Operating Mode**
- \blacktriangleright High Conversion Efficiency
- Minimum Beam Loss
- Easy Maintenance & Serviceability

The linac option seems attractive because higher beam current can be achieved.

The Linac is divided into three parts for convenience.

- •Low Energy (upto 20 MeV)
- •Medium Energy (20 MeV to 100 MeV)
- \cdot High Energy ($> 100 \text{ MeV}$)

The accelerating structures used at different energies are:-

- •Low Energy RFQ, DTL/CCDTL /SDTL
- •Medium Energy CCDTL /SDTL
- •High Energy CCL, Superconducting structures

Main Design issue is beam loss control. Space charge forces are strongest in the low energy end. **So particular care must be taken to design this part.**

Scheme for Indian ADS Programme

Layout of 20 MeV Linac Section

ECR Ion source RFQ 4 Vane type 20 MeV, 30 mA 50 keV, 35mA. 3MeV, 30 mA Alvarez type DTL

- **LEBT**: Low Energy Beam Transport System
- **RFQ** : Radio Frequency Quadrupole
- **MEBT**: Medium Energy Beam Transport System
- **DTL**: Drift Tube Linac

ECR Ion Source P. Roychowdhary et al, APPD, BARC

 \triangleright Five electrodes \triangleright 2.45 GHz $> 50 \text{ keV}$ > 50 mA $\geq 0.02 \pi$ cm-mrad

Testing in progress

20 MeV Linac: Transport Line LEBT

2.45 GHz ECR Ion source 50 keV, 35mA.

352.21 MHz, 4-Vane type RFQ 3-MeV, 30 mA

352.21 MHz, 20 MeV, 30 mA Alvarez type DTL

Low Energy Beam Transport (LEBT) System

Tolerance on solenoid strength $= \pm 30$ Gauss

Space Charge Compensation in LEBT

 \triangle Beam transport in the LEBT is mostly determined by space charge forces

 \supset Space charge compensation can restrict increase in beam size and emittance growth significantly.

How it is done?

 \triangleright Introduce a residual gas in the background.

 \triangleright The beam ionizes the residual gas.

¾**Electrons are trapped by the space charge potential of the beam.**

 \triangleright So space charge is gradually reduced.

Effect of Non-Linear space charge on beam dynamics in LEBT

•KV distribution being uniform causes linear space charge forces.

•Any kind of non-uniformity in the density will give rise to non-linear space charge.

•Non-linearity of the space charge field reflects in emittance increase as well as in waist diameter.

With KV- distribution

With Parabolic distribution

KV: Kapchinskij-Vladimirskij distribution

S.C.L. Srivastava, S.V.L.S. Rao and P. Singh., Pramana-J Phys 68, 331 (2007)

Low Energy Beam Transport Line

¾**Used to match the dc beam from the ion source to the RFQ.** ¾**Two solenoids (~2 kG) are used**.

Beam Energy = 50 keV Beam current = 30 mA RMS Norm. Emittance = 0.02π **cm mrad**

Max. beam size in the LEBT = 13 cmTotal length = 1.85 m.

Effect of Space Charge Compensation on beam dynamics

Effect of Emittance on Transmission

If the emittance of the input beam to the RFQ is more than the designed value the transmission drops drastically.

Critical Input parameter for RFQ design: rms emittance of the beam from the ion source

Fabricated & tested at RRCAT, Indore

20 MeV Linac: Accelerating Structure RFQ

2.45 GHz ECR Ion source 50 keV, 35mA.

352.21 MHz, 4-Vane type RFQ 3-MeV, 30 mA

352.21 MHz, 20 MeV, 30 mA Alvarez type DTL

Principle of RFQ

Particles experience alternate gradient electric focusing which is stronger than magnetic focusing for low velocity particles.

Figure 2: A RELAX3D model of the exit region showing three regular cells, a transition cell and a short unmodulated end section.

The longitudinal fields for acceleration are produced by modulating the electrodes longitudinally.

The RFQ simultaneously **Focuses**, **Bunches** and **Accelerates** the beam.

Full 3D model of the RFQ

RFQ Cavity design (3D)

End Regions of the RFQ

Magnetic Field lines in Quadrupole mode at end

Boundary conditions

 $\mathbf{E}_{\mathbf{p}} = \mathbf{0}$ **B n = 0**

The RFQ resonator has to be closed at both ends.The longitudinal magnetic field lines cannot be perpendicular to the end plate It must be parallel.

Vanes do not extend to the end plate and in addition are cut to facilitate turning of the magnetic field.

Operating Mode: TE₂₁₀ like mode

Dominant modes TE_{21} - Quadrupole TE $_{\rm 11}$ -Dipole

Coupling Cell

So Extrachment September of modes in a given frequency range is less. **N** Field tilt effects can become important for structures with a length of few wavelengths.

The RFQ is 4 m long. For better stability it will be made in smaller sections which will be **resonantly coupled**.

The coupling plates separate the segments and prevent the magnetic field lines from continuing from one segment to the next. The gap between the vanes provides capacitive coupling.

RFQ Parameters

1. Bunching 2. Focusing 3. Acceleration

3 MeV Radio Frequency Quadrupole

Coupling cell

فنهي

Tuners

64 tuners --- 16 per quadrant, symmetrically placed in each quadrant. $\overline{}$ Static tuners. **↓** Cooling required. Tuning Range : 468.5 kHz/mm (all)

Variation of dipolar and quadrupolar frequencies with RFQ length

$$
\omega_n^2 = \omega_0^2 + (n\pi c/L)^2
$$

 $E_n = 0$ $B_n = 0$

Thermal Analysis of the RFQ

Heat flux on Cavity walls of the RFQ

5845-84734 (W/m2)

- Coolant temperatures are 160C in vane channelsand 200C in wall channels
- **◆ Frequency sensitivity with** vane water temperature is -46 kHz/⁰C
- ***** Frequency sensitivity with wall water temperature is $+35$ kHz/⁰C

20 MeV Linac: Beam Stop

2.45 GHz ECR Ion source 50 keV, 35mA.

352.21 MHz, 4-Vane type RFQ 3-MeV, 30 mA

352.21 MHz, 20 MeV, 30 mA Alvarez type DTL

High flux neutron Facility

Neutron Yield for Beryllium target

Beam Stop

Beam stop will be used to stop the beam of protons in order to test the quality of the beam during commissioning.

Beam will be under full power and continuous ¾20 MeV, 30 mA Beam ¾Total power 600 kW

Conical target for beam dump.

400 keV RFQ parameters

If the emittance of the input beam to the RFQ is more than the designed value the transmission drops drastically.

Transmission at the end of RFQ : 94.8%

Variation of RFQ parameters along the length.

RF Coupler design

Coupler Dimensions:

LAYOUT OF 50 KW RF COUPLER ASSEMBLY

50 kW Coaxial Coupler specifications:

- •Return Loss: Better than -25 db
- •Coupling Coefficient: Variable from 1.2 to 0.7
- •Max delta T on window: < 30°C
- •Max. temperature on loop: 120°C
- •Frequency Shift: < 2 MHz

250 kW, 352 MHz Iris Coupler Development

- • Ten No. Waveguide couplers required for 20 MeV LEHIPA
- • WR2300 to Iris transition using double ridge waveguide
- • Tapered transition with variable and constant ridge width has been studied.
- \bullet

External Q and Coupling Coefficient variation with Iris length

20 MeV Linac: Transport Line MEBT

2.45 GHz ECR Ion source 50 keV, 35mA.

352.21 MHz, 4-Vane type RFQ 3-MeV, 30 mA

352.210 MHz, 20 MeV, 30 mA Alvarez type DTL

Medium Energy Beam Transport Line

Beam from the ion source is not round and is pulsed.

So now four transverse parameters of the beam have to be matched to the input of the DTL.

The transverse matching is achieved by using 4 quadrupoles.

RF buncher is used for longitudinal matching.

20 MeV Linac: Accelerating Structure DTL

2.45 GHz ECR Ion source 50 keV, 35mA.

350 MHz, 4-Vane type RFQ 3-MeV, 30 mA

350 MHz, 20 MeV, 30 mA Alvarez type DTL

The Drift Tube Linac

 \cdot The DTL tank is a resonant cavity excited in the TM $_{010}$ mode. It consists of drift tubes connected to tank by stems separated by gaps. * Quadrupoles are mounted in drift tubes for focusing.

Post Couplers placed every third DT in the first tank

Tuners

Cavity Parameters

- ¾ 5 rectangular slots per vacuum port \triangleright Slots orientation along the direction of surface current
- ¾ Port Conductance: 1400 l/s
- \triangleright No. of vacuum ports in first tank: 2

 \triangleright Frequency detuning due to the vacuum ports is negligible (13.39 kHz

Comparison of DTL and CCDTL

40-100 MeV

The Family of H-Mode Resonators

H-type DTL's

r.t. IH-DTL W < 30 MeV 30-250 MHz copper plated steel bulk niobium

r.t. CH-DTL W < 150 MeV 150-700 MHz

s.c. CH-DTL W < 150 MeV 150-700 MHz

RT SR section

Solution is Room Temperature Spoke Resonator (aka Cross-bar Htype resonators) section from 3 MeV to 15 MeV .

RT TSR section

The main advantage of RT SR is its high shunt

H-type DTL's

KONUS (Combined 0° Structure) beam dynamics Example: GSI HLI IH cavity

SC Spoke Resonator

Shepard, Kelly, Fuerst, presented

The cavity can operate cw at gradients up to 12 MV/m, producing more than 4.5 MV of accelerating potential

In order to efficiently design a linac it is necessary to divide it in sections, each using a different cavity geometry in an energy range.

Design of Superconducting Cavity

SUPERFISH output plot showing electric field lines for single cell cavity without beam tube 3-D view of the cavity at 700 MHz

100 MeV – 1 GeV SC Linac

(Initial design with 5 MV/m gradient)

Main parameters of the HINS (8GeV H- linac)

Global Accelerator Parameters for 500 GeV cms.

Parameters of SC Linac (15 MV/m)

Beam Dynamics

•**Aperture is more than 16 times the rms beam size in the SC Linac**

- **Emittance growth is very small**
- •**Transmission through the linac = 100%.**

Accelerating Gradient in SC Linac

Layout of LEHIPA Building

Summary

- •**Physics Design of a 1 GeV, 30 mA Linac has been done**
- •**100-1000 MeV part will be superconducting**
- •**In Phase I, 20 MeV, 30 mA Linac is being built**
- • **Development of prototypes of different sub-systems is in progress**
- **Although work in progress but not covered in detail are RF power, Control systems, Diagnostics, Radiation safety, monitors, Cooling systems, Material development, Cryogenics, Vacuum systems, Shielding, Target and Reactor design**
- •**We have made some progress but still miles to go………..**

PARTICIPATING DIVISIONS:

⁹**Nuclear Physics Division (NPD)**

- \checkmark Vacuum Physics and Instrumentation Division (VPID)
- \checkmark Accelerator & Pulse Power Division (APPD)
- $\sqrt{\text{Reactor Safety Division (RSD)}}$
- \checkmark Centre for Design and Manufacture (CDM)
- \checkmark Research Reactor Design & Projects Division (RRDPD)
- \checkmark Technical Services Division (TSD)
- \checkmark Architecture & Civil Engineering Division (A&CED)
- \checkmark Laser and Neutron Physics Section (LNPS)
- \checkmark Control Instrumentation Division (CnID)
- \checkmark Radiation Safety & Systems Division (RSSD)
- \checkmark Electronics Division (ED)
- \checkmark Reactor Control Division (RCnD)
- \checkmark Reactor Projects Division (RPD)
- \sqrt{R} aja Ramanna Centre for Advanced Technology (RRCAT)

Team Members from NPD

S.V.L.S. Rao Rajni Pande Shweta Roy $\rm T.$ $\rm Basak$ (now at TIFR) S.C.L. Srivastava Piyush Jain Rajesh Kumar S.K. Singh P. Singh P.K. Nema R.K. Choudhury S. Kailas V.C. Sahni

